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Platform-vibrator with shock is widely used in the construction industry for compacting and
molding large concrete products. Its mathematical model, created in our previous work, meets all
the basic requirements of shock-vibration technology for the precast concrete production on low-
frequency resonant platform-vibrators. This model corresponds to the two-body 2-DOF vibro-
impact system with a soft impact. It is strongly nonlinear non-smooth discontinuous system. This
is unusual vibro-impact system due to its specific properties. The upper body, with a very large
mass, breaks away from the lower body a very short distance, and then falls down onto the soft
constraint that causes a soft impact. Then it bounces and falls again, and so on. A soft impact is
simulated with nonlinear Hertzian contact force. This model exhibited many unique phenomena
inherent in nonlinear non-smooth dynamical systems with varying control parameters. In this
paper, we demonstrate the transient chaos in a vibro-impact system. Our finding of transient chaos
in platform-vibrator with shock, besides being a remarkable phenomenon by itself, provides an
understanding of the dynamical processes that occur in the platform-vibrator when varying the
technological mass of the mold with concrete. Phase trajectories, Poincaré maps, graphs of time
series and contact forces, Fourier spectra, the largest Lyapunov exponent, and wavelet
characteristics are used in numerical investigations to determine the chaotic and periodic phases of
the realization. We show both the dependence of the transient chaos on the control parameter value
and the sensitive dependence on the initial conditions. We hope that this analysis can help avoid
undesirable platform-vibrator behaviour during design and operation due to inappropriate system
parameters, since transient chaos may be a dangerous and unwanted state of a vibro-impact
system.

Keywords: platform-vibrator, vibro-impact, technological mass, mold with concrete, transient
chaos, dependence on initial conditions.

Keep an eye on the potential appearance
transient chaos since this phenomenon is an
inexhaustible source of challenge and
inspiration.

TamasTél [1]

1. Introduction

Platform-vibrator with shock is an equipment widely used in the
construction industry for compaction and molding large-sized concrete
products. Its appearance is shown in Fig. 1.

In [2], the basic requirements of the shock-vibration technology for the
precast concrete production on low-frequency resonant platform-vibrators are
described. We have described in detail the creation of a mathematical model of
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a platform-vibrator that uses shock to produce asymmetric oscillations. It was
shown that the created model meets all the basic requirements for a real
machine. It provides: T-periodic steady-state movement after passing the
transient process; the appropriate value of mold oscillations amplitude
A= 0.76 mm; the satisfactory value
of the asymmetry coefficient — the
ratio of lower acceleration to the

upper acceleration Y36,

Wy
The created mathematical .
model corresponds. to the two- Fig. 1. Appearance of the platform-vibrator
body 2-DOF vibro-impact system  with shock that widely used in the construction
(Fig. 3). It is strongly nonlinear industry for compaction and molding large

. . concrete products
non-smooth discontinuous system. procu

This is unusual vibro-impact system due to its specific properties. The upper
body (mold with concrete) with a very large mass breaks away from the lower
body (platform-vibrator table with attached rubber gasket) at a very short
distance during vibrational motion. Both bodies move separately and then the
upper body falls down onto the soft constraint. The impact that occurs is soft
one due to the softness and flexibility of the gasket. The soft impact simulation
requires special discussion. After comparing simulations by different methods
[3], in particular, linear and nonlinear interactive contact forces, we decided to
simulate a soft impact with a nonlinear contact force in accordance with the
Hertzian quasistatic contact theory [4, 5].

This model turned out to be appropriate for numerical investigations of a
variety of chaotic phenomena. It exhibited many unique phenomena inherent
in nonlinear non-smooth dynamical systems with varying control parameters
[3, 6]. We have observed chaotic motion, boundary and interior crises, crisis-
induced intermittency, coexisting regimes in the hysteresis zone, and transient
chaos. The exciting frequency, the technological mass of the upper body (mold
with concrete), and the stiffness of vibro-isolating spring were chosen as
control parameters.

These phenomena are widely discussed in the scientific literature [7-10].

In this paper, we want to demonstrate precisely the transient chaos in a
vibro-impact system.

To our knowledge, there were no prior results on transient chaos in
platform-vibrator with shock. This type of example is observed for the first
time in the literature. Our finding of transient chaos in platform-vibrator with
shock, besides being a remarkable phenomenon by itself, provides an
understanding of the dynamical processes that occur in the platform-vibrator
when varying the technological mass of the mold with concrete.

This phenomenon is often observed in many theoretical, numerical
simulation and experimental investigations. Transient chaos is a common
phenomenon of many engineering, physical and biological systems. There are
many experimental evidence of transient chaos.
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Transient chaos arises and finds applications in a wide variety of disciplines
such as physics, chemistry, biology, engineering, economics, and even social
sciences. There are many works about it in the world scientific literature [11-
20]. These articles consider the emergence of transient chaos and its analysis in
different dynamical systems in various branches of science.

In a large article [11] with excellent Figures, a solid analysis of transient
chaos in optomechanics is given. The authors find that transient chaos, besides
being a physically meaningful phenomenon by itself, provides a resolution of
breakdown of quantum-classical correspondence.

The transient chaos regime in a two-dimensional system with discrete time
(Hénon map) is considered in [12] by Russian authors from Saratov State
University.

In [13], transient chaos in fractional Bloch equations is described. The
authors believe that it is very important to study the non-linear Bloch equation
in order to better understand the conditions that affect the development of
chaos.

In [15], hidden transient chaotic attractors of Rabinovich-Fabrikant system
are considered.

The authors believe that the doubly transient chaotic behavior analyzed in
[16] is both surprising and significant.

In [17], the authors show the important role of chaotic transients in
Celestial Mechanics through the Sitnikov problem.

In [19], the authors have presented the interesting phenomena of transient
chaos in a system of three, four and six globally coupled nearly conservative
Hamiltonian Duffing oscillators. They have also presented the experimental
evidence of transient chaos.

It is shown in [20] that chaotic saddles are responsible for chaotic transients
and intermittency in high-dimensional spatiotemporal chaotic systems.

These articles often use the term chaotic saddle. There is an object in the
phase space, the chaotic saddle, that is responsible for transient chaos [17]. Ina
large, comprehensive tutorial [18], they are defined in this way. A
nonattracting set, which exists in phase space and is responsible for chaos, is a
well-defined fractal, although it is more rarefied than chaotic attractors. This
type of chaos is called transient chaos, and the underlying nonattracting set in
invertible systems is a chaotic saddle.

Two known scientists who have studied the transient chaos for many years
have published a large comprehensive research monograph [21].

They define the transient chaos in such manner. Transient chaos is a
phenomenon exhibited by deterministic nonlinear dynamical systems, wherein
trajectories starting from randomly chosen initial conditions appear chaotic up to
certain time, and then switch over, often quite abruptly, into a final periodic state
that governs all the rest of the signal. Then they clarify: transient chaos is the
form of chaos due to nonattracting chaotic sets in the phase space. And once
again they emphasize: “We accept the definition, used throughout the book, that
transient chaos is the dynamics associated with nonattracting chaotic sets”.
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The difference between sustained and transient chaos lies in the actual
value of average lifetime ( ) It is infinite for sustained chaos, but finite for

transient one. The lifetime of a transient chaos strongly depends on the initial
condition. The average lifetime can be obtained from an ensemble of several
observations, although for individual observations, the actual lengths of
transients depend sensitively on initial conditions: nearby trajectories typically
have drastically different lifetimes. The sensitive dependence on the initial
conditions is the basic feature of chaotic dynamics.

It was discovered by the famous scientist E. Lorenz in 1963. He was a
theoretical meteorologist. He simulated atmospheric flows and obtained an
unexpected result that led him to a powerful insight about the way nature
works: small changes in initial data can have large consequences. The idea
came to be known as the “butterfly effect”. He titled his paper "Predictability:
Does the Flap of a Butterfly's Wings in Brazil Set Off a Tornado in Texas?"
[22]. And the butterfly effect, i.e., sensitive dependence on initial conditions,
has a profound corollary: forecasting the future can be nearly impossible.

Fig. 2 shows the phase trajectories for the Lorenz model. The trajectory
outlines a figure, which shape resembles the two butterfly wings. The system
goes through a completely predictable loop in one wing and then makes a
transition from one wing to another, always unexpectedly and unpredictably.

Transient chaos
often precedes the by
birth of permanent
chaos. ]

In [15], the author
writes that transient
chaos is ubiquitous in
chaotic systems. The
author warns that the
dynamics on systems
with chaotic transients

can be unpredictable Fig. 2. Two butterfly wings — phfise trajectorles“for Lorenz
finallv th ¢ model. They served as the basis for the term “butterfly

even . nally the S}_/S cm effect”, meaning the sensitive dependence of chaotic motion

falls into a very simple on initial conditions — the main feature of chaotic dynamics

motion. So, he notes

that transient chaos can be quite disastrous and therefore unwanted, and it can
be the cause of catastrophic developments in a dynamic system. Therefore,
control of transient chaos can be desirable in some cases.

A systematic investigation of transient chaos began in the late 1970s. A
comprehensive investigation of transient chaos originated in 1983 from the
discovery that chaotic transients arise typically in systems passing through a
type of global bifurcation called crisis [23].

In [21] in 2011, the authors regret: “In spite of the experimental works and
the several experiments carried out in the last 20 years, it is possible that due to
the limited awareness of the phenomena of transient chaos even among
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researchers in the nonlinear-dynamics community, transiently chaotic signals
were considered to be uninterpretable and were discarded”. Therefore, we
believe that knowledge of transient chaos can be particularly important and
useful due to the growing number of applications in various fields of science
and engineering based on or motivated by nonlinear dynamics.

Thus, our study of transient chaos in an unusual vibro-impact system may
be interesting from three points of view. Firstly, it adds information to
fundamental knowledge of the phenomena that occur in nonlinear dynamical
systems. Secondly, it shows the behavior of a specific vibro-impact system
(platform-vibrator with shock) with varying the control parameter. Thirdly, it
allows to point out at what values of the control parameter an undesirable and
possibly dangerous state, such as permanent and transient chaos, can occur.

So, the goals of this paper are:

* to demonstrate the transient chaos and its dependence on the values of the
control parameter;

« graphically show the strong dependence of the state of a nonlinear non-
smooth discontinuous vibro-impact system on the initial conditions by
example of transient chaos and coexisting regimes;

* to show an unwanted range of a control parameter for platform-vibrator
with shock, in which dangerous phenomena can occur.

2. Brief description of platform-vibrator mathematical model

The two-mass platform-vibrator with shock is one of the successful
solutions for vibration equipment that implements shock-vibration technology
for concrete mixtures compaction and reinforced products molding [23].

The creation of platform-vibrator mathematical model was described in
detail in our papers [2, 3, 6]. Now we have to repeat the basic statements
required to understand its dynamical behaviour.

We accept such a design scheme for platform-vibrator with shock (Fig. 3).

Exciting force F (1) = P cos( ot + ¢, ) , its period is T =27/®.

The platform table with mass m, is attached to the base by linear vibration
isolating spring of stiffness &, and a linear dashpot with damping factor ¢, .

Exciting external periodic force

4 F(t) is generated by electric
my, E2, V2 :
F(1) €2 motors mounted under the table.
h ko, R Co » Elastic rubber gasket with
mi, £1,V) P thickness / and stiffness & is
. e = 0 attached to the table. A linear
ki I:IH C dashpot with damping factor
¢, 1s placed between the table
Fig. 3. Design scheme for platform-vibrator with and the mold. Mold with
shock. Platform table wi'th att{iched r'ubbe.r gaslfet is concrete with mass m, is
attached to the base with a linear vibro-isolating . :
spring. The mold with concrete is installed on the installed on the gasket but is not

gasket without fastening fastened both to the gasket and
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to the table. So, it can tear herself away from the gasket and bounce. The
machine starts its movement when the electric motors begin their work. First,
the table and the mold move vertically together. Then the mold comes off from
the gasket. The table and the mold are moving separately until the mold falls
down onto the rubber gasket. Impact occurs. The bodies move together again
until the mold comes off the gasket and so on.

The created mathematical model corresponds to the two-body 2-DOF
vibro-impact system. It is strongly nonlinear non-smooth discontinuous
system. It has some specific properties, namely: the upper body with very large
mass breaks away from the lower body at a very short distance during
vibrational motion; both bodies move separately; the upper body falls down
onto the soft constraint; the impact that occurs is soft one due to the softness
and flexibility of the constraint.

Vibro-impact movement of the platform includes both joint movement
during impact and separate motion between impacts. The equations of this
movement are:

. o1 ) 1
Y ng_‘D]z)ﬁ =280, +;F(f)+H(Z){2§ow2XV1 _(D§X[h—(y2 4 ]_;F;on (Z)},
1 1

1
¥y =-g-28,0,7, +H(Z){w§ [h_(yz _yl)]_zgomz}'/l +m—Fc0n (Z)} (1)
2

The initial conditions are:
at t=0 wehave ¢, =0, y, =0, 3, =0, y, =h—%y, 7, =0. (2)
The static deformation of the gasket is: L, = m,g/k, , g is the acceleration

due to gravity.
Here the standard notations are introduced:
k k C c c m
_1:“)12’ _Ozwg’ _0:2&»0“)2’ =280, = =280,, —2=x. (3)
m m, my m m, m

H(z) is Heaviside step function relatively bodies’ rapprochement
z=h—-(y,-y). F,,(2) is contact interactive force that simulates an impact
and acts only during an impact.

The damping forces are taken to be proportional to the first degree of
velocity:  Fuumy 1 = €1 V15 Faampo =¢o¥y - The influence of the concrete

mixture can be taken into account as some additional damping ¢, y, .

In the two-body model, the masses are concentrated in the mass centers of
both bodies. Parameters y; and y, are the coordinates of these centers for the
lower body (platform table) and the upper body (mold with concrete)
respectively in the selected coordinate system. The origin of coordinate y is
chosen in the table centre in the state of static equilibrium.

The model numerical parameters are listed in Table 1.
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Table 1
Numerical parameters of platform-vibrator with shock

Mass of table mj , kg 7400 Damping ratio of dashpot in spring & 0.5
Mass of mold with con. m kg 15000 | Damping ratio of dashpot in gasket &g 0.02
Stiffness of rub.gask. k¢ , N-m™ 3.0-10° Damping ratio in concrete mixture &2 0.03
Stiffness of spring A, N-m™" 2,610’ Elastic modulus of mold E5 , N-m™ 2.10"
Poisson’s ratio of rub.gask. v 04 | Elastic modulus of rub.gask. E1 ,N-m? | 35.10
Poisson’s ratio of mold Vv, 0.3 | Amplitude of exciting force P,N 2 44.10°
Thickness of gasket 4, m 0.0275 | Frequency of exciting force , Hz 25
Radius of gasket R, m 5

We simulate a soft impact using nonlinear contact Hertzian force in
accordance with quasistatic contact Hertz’s theory [4,5].
4 1-v} 1-v3
= d > 8] = . s 82 = 2~ (4)
3(8,+8,)VA+B Em E,m
Here z(¢) is the rapprochement of the bodies, as before, z=(y, —y,)—#h,

when (y,-y)<h; v,

1

Foup(2)= KIz0] 2, K

and E,; — Poisson’s ratios and Young’s moduli of

elasticity for both bodies; 4, B, ¢ — are constants characterizing the local
geometry of the contact zone. The gasket surface is flat, but we consider it as a
sphere of the large radius R. Then in the collision of a plane (mold) and a

sphere (rubber gasket) A=B=1/2R, ¢q=0.318.

3. Transient chaoswhen the technological mass m, is varied

As we have already written in the Introduction, this model exhibited many
unique phenomena inherent in nonlinear non-smooth dynamical systems with

varying control parameters. When the technological mass m, of the upper

body (mold with concrete) was chosen as the control parameter and varied, we
observed transient chaos. Transient chaos is known as chaos with finite
lifetime. When a transient chaos is observed in the system, the trajectory is
first chaotic for some time and then becomes periodic for the same value of the
control parameter [13]. In [14], the authors note that a typical occurrence of the
transient chaos is in the periodic windows inside the chaotic region. “Periodic
windows, in spite of their name, are in fact parameter regions in which
transient chaos is typically present” [21].

Let's see how the largest Lyapunov exponent behaves when varying the
control parameter (Fig. 4, 5). In Fig.4 its behavior is shown in the wide control
parameter range. Fig. 5 is the portion of this graph that is inside the oval on a
larger scale. The first thing that catches your eye is the presence of coexisting
modes that exist in this narrow range of the control parameter. They are show
ninyellow.
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9000 11000

m,, kg

Fig. 4. Dependence of the largest Lyapunov exponent on the technological mass m;

We emphasize once again that coexisting regimes can arise when the
control parameter is constant, but the initial conditions are different. We have
shown these coexisting
regimes in more detail in a
[6]. Here we observe the

hysteresis effect, that is, the e 75 \o\wlso - -
jump phenomenon [25]. M \\ e ey

It is known that the s

A Vinax

positive sign of the largest a2k
Lyapunov exponent a6 L my, ke
determines chaotic

Fig. 5. Dependence of the largest Lyapunov exponent on

dynamics. . . . the technological mass m; in narrow range of control
Its negative sign gives parameter (inside the oval). In the coexisting regime, we

hope for the periodic see the alternation of Lyapunov exponent sign, i.e. the

motions. We can believe alternation of chaotic and periodic modes

that areas of negative Lyapunov exponent signs correspond to the periodic
windows inside the chaotic region, cannot we? We observed transient chaos
precisely in the region of periodic windows. We emphasize that transient chaos
has a different form for different values of the control parameter and initial
conditions, and also its lifetime is different.

When the initial conditions are chosen in the state of permanent chaos for
m,= 6000 kg, we get transient chaos in a narrow range of the control

parameter values. Chaotic vibrations, arising at certain system parameters
values, degenerate into a periodic subharmonic (2,2)-regime after some time.
(2,2)-regime is the regime with period 27 and 2 impacts per cycle. In Fig.6, we
show pronounced transient chaos for m,= 6330 kg. Time series for the upper
body (mold with concrete), contact force, and phase trajectories for both
bodies are shown.

The figures of the time series (Fig. 6 (a)) and the contact force (Fig. 6 (b))
clearly show how the chaotic regime suddenly turns into a periodic one. Phase
trajectories in the periodic phase, overlapped with the corresponding
trajectories in chaotic phase, are shown in red in Fig. 6 (c), (d).

A natural question is whether there is actually chaos in the seemingly
chaotic signals observed over finite time scales [21]. Measurement of the
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lifetime distribution, the escape rate, and the average lifetime (see sec. 5) may
give one of the quantitative characteristic. Another paramount characteristic is
the Lyapunov exponent. One should measure, for example, the Lyapunov
exponents and check whether at least one of the exponents is positive.
Determination of dynamical invariant such as the Lyapunov exponent and its
positive sign can be considered as one of the chaos criteria.

350 360 370 s 380 390

-0.4 * -0.3 =
-0,0035 0,0035 0,025 0,032
yi.m Vo.M

(© (d)

Fig. 6. (a) Time histories for upper body; (b) Hertz contact force; (c), (d) phase trajectories for
m;=6330 kg (trajectory initiated from permanent chaos at m, =6000 kg in red point 1 (Fig. 12))

Analysis of the largest Lyapunov exponent A,

over a quite a long time
helps to determine the existence of transient chaos. Its sign is positive for
chaotic motion, then after a long procedure, the exponent converges to a
negative value, which is typical for periodic movement. In Fig. 7 it is clearly

seen that when the initial time is #,=350 s, after some time (4.9 s) the largest

Lyapunov exponent A,

. crosses the abscissa axis and becomes negative. We

emphasize that the value of the control parameter remains the same.

30

A max
1)

_l@slj.z 3522 3542 3562 3582 360.2

t,s

Fig. 7. Convergence of the largest Lyapunov exponent to negative value during the transient
chaos: m, = 6330 kg, start from permanent chaos at m, =6000 kg in red point 1 (Fig. 12)



ISSN 2410-2547 31
Omip marepianiB i Teopis cropyx/Strength of Materials and Theory of Structures. 2021. Ne 106

Since transient chaos is a fairly new concept, an interesting and
“capricious” phenomenon, we want to show it in more detail.

To determine whether the transients are truly chaotic, one therefore needs
more information than the mere positivity of the Lyapunov exponent.
Qualitatively, the visual appearance of the signal can be helpful: about chaotic
nonattracting sets trajectories should be complicated. This is, nonetheless, only
a hint. A property uniquely indicating the chaotic nature of the transients is the
irregular dependence of lifetimes on initial conditions [21], as illustrated by
Table 3, 4, 5 in Sec. 5.

A B
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360 365 iTo s s 380
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Fig. 8. Time series: (a) for lower body; (b) for upper body.
my= 6330 kg; trajectory initiated from phase of transient chaos at m,= 6330 kg in red point 4 in
Fig. 5(a)

We show in detail the transient chaos that we observe when the
technological mass m, = 6330 kg, and the initial conditions are chosen in the

same state of the vibro-impact system in red point 4 in Fig. 6 (a). Time series
are depicted in Fig. 8. Fig. 8(a) shows the time series for the lower body
(platform table) in black; Fig. 8(b) - for the upper body (mold with concrete) in
grey.

We see very well how chaotic trajectories abruptly turn into periodic ones,
which then exist all the time.

Fig. 9 shows the phase trajectories for the upper body in grey and for the
lower body in black for area of chaotic motion (Fig. 9 (a)) and for area of
periodic motion (Fig. 9 (b)). The corresponding Poincaré maps are depicted in
Fig. 9 (c), (d)).

Phase trajectories and Poincaré maps have the typical forms for chaotic and
periodic movements. Phase trajectories are closed curves for periodic motion
and open curves (hence tangles of curves) for chaotic one. The Poincaré map
for the periodic mode is several separate dots — two dots for regime with
period 27. The Poincaré map for a chaotic regime is a set of dots of an
undefined shape. Often this set has the fractal structure.
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Fig. 9. The phase trajectories: for lower body in black, for upper body in grey, for chaotic phase
(a), for periodic phase (b). Poincaré maps for both bodies in chaotic part of signal (c), in periodic
part of signal (d).m,= 6330 kg. Start for left panel is in red point 4, for right panel - in green point

5 in Fig. 8

In Fig. 10 Fourier spectra (Fig. 10 (a), (b)) and the graph of contact impact
force F,,, (Fig.10 (c)) are depicted.

1,E+04

1E+04
-
= +02 S 4+
T LEH2 S LEw02

1LE+00 i . . 1.E+00

10 20 ) 140 190 40 920 140 190
frad-s! frads!
(a)

(b)

360 365 3704, 375

©
Fig. 10. Fourier spectra for chaotic (a) (start from red point 4 in Fig. 8) and periodic (b) (start from
green point 5) parts of signal. Contact impact force F,, (c) (start from red point 4 in Fig. 8).
my= 6330 kg

380

The Fourier spectrum for the periodic mode is separate clear “sticks” for
several frequencies, but for the chaotic mode, it shows many weak frequencies
and becomes more broad and continuous.

The graph of contact impact force F,, demonstrates a clear sudden

boundary between the regions of chaotic and periodic motions in the same

mode with the same value of the control parameter and the same initial
conditions.
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Fig. 11 shows the surfaces of wavelet coefficients [29, 30] for the lower
body (the table of the platform-vibrator) in the same motion mode. They are
obtained using CWT (Continuous Wavelet Transform) software from Matlab
with Morlet wavelet.

COEFS

300

400
500 388

time,s

soales a scdhen time,s

(a) (b)
Fig. 11.Surfaces of wavelet coefficients for the lower body in: chaotic(a) (start from red point 4 in
Fig. 8) and periodic (b) (start from green point 5) parts of signal. m,= 6330 kg

Fig. 11(a) clearly shows that the frequency components in chaotic motion
are not constant in time; they change over time. Indeed, this is typical of
chaotic motion — the presence of many different frequencies that vary over
time. This fact is also reflected in the Fourier spectrum (Fig. 10 (a)). On the
contrary, the frequency components of the periodic movement do not change
in time, they are constant over time. This is clearly seen in Fig. 11 (b) and in
the Fourier spectrum in Fig. 10 (b).

The graphs in Fig. 8 - 11 confirm that transient in platform-vibrator is truly
chaotic.

All these charts help to understand and feel the phenomenon of transient
chaos, because they brightly demonstrate it from different sides.

4. Dependence of transient chaos on control parameter value

The form and lifetime of transient chaos T depends both on the control
parameter value and on the initial conditions.

Table 2 shows this dependence on the control parameter value, when initial
conditions are chosen in state of permanent chaos at m,=6000 kg in red
point 1. Since the concept of initial conditions is very important for the
transient chaos understanding, we show in Fig. 12 more graphically the points
in the permanent chaos at m,= 6000 kg, which are chosen as the starting

points. They are shown in red (point 1), in yellow (point 2), and in blue
(point 3).
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Fig. 12. Permanent chaos at m,= 6000 kg; its start was chosen in chaos at m,= 5800 kg

Table 2

The form and lifetime of transient chaos t for various values of the control
parameter when choosing the initial conditions in a state of permanent chaos at
m, = 6000 kg in red point 1 in Fig. 12

my, kg 1,8 Time series for upper body
0,033
B 1T e o
6300 967.2 R A ||hld||l||h"‘“'“"“ YT
0.025 -——-
360 1,5 1315 1325
6330 355
6340 4.5
6360 1.8
350 360 370 18 380 390

Table 2 clearly demonstrates how strongly the appearance of transient
chaos and its lifetime change with a change in the control parameter. For m, =

6300 kg we see a very long chaotic transient. The transient time becomes so
long that the system stays in a chaotic state for any practical time. Generally,
the lifetime of the transient could be extremely long [15]. For m, = 6340 kg it

becomes short, for m,= 6360 kg it becomes very short. The asymptotics is

established quickly. The transient chaos of short average lifetime may be
difficult to identify[21].But since these cases are a continuation of the previous
ones, we hope that we can treat these short regions as transient chaos.
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5. Dependence of transient chaos lifetime 7 on initial conditions

The duration of the transient chaotic oscillations depends sensitively on the
initial state of the system [1,21]. In other words, the dependence of transient
chaos lifetime on the initial conditions is also very strong. Table 3 shows the
transient chaos lifetime for different control parameter values with different
initial conditions. The initial conditions for the three left columns correspond
to red point 1, yellow point 2, and blue point 3 in permanent chaos at
m,= 6000 kg (Fig. 12). The rest of starting points are taken in the same mode.

Average lifetime values (T) are the result of the averaging of these twelve
realizations; they are shown in the farright column.
Table 3

Transient chaos lifetime t for different values of the control parameter for
different initial conditions

Mass Lifetime of transient chaos 1, s
. k initial conditions in point <T> 5S
»XE 2 3 ) 5 6 7 3 9 0 | 1 12

6300 | 967.2| 401.6| 759.1/1955.4] 720.3| 936 96.1] 1604.6 190.4] 256.8| 887.6| 498.9| 772.8
6310 |261.0] 1.4/519.5696.7| 585.4] 711.1] 287 95.9/368.5 10.3] 38.0[ 72.2] 303.9
6320 |109.1] 34.3]159.8] 35.9/309.8] 34.3] 459 89.7[181.00 6.9147.5| 10.1] 97.0
6330 | 35.5| 158 9.3 243 519 5.7 105 344 26.7 15.8 8.1 4.6 28.1
6340 4.5 59 1.2 38.1] 59 158 19 7.6 163 25 6.5 74 9.6
6350 25 06 81 65 94 0.8 30 86 49 119 34 95 5.8
6360 1.8 08 21 82 65 53 33 43 3.1 054 44 2.6 3.6
6370 1.5 05 1.8 1.2] 23 09 10 19 21 07 15 2.8 1.5
6380 300 06 120 22 57 121 121 22 11 3.1 1.2 1.9 2.0
6390 19 1.8 1.8 1.2] 1.8 09 34 19 15 24 1.6 1.8 1.8
6400 14 1.0 2.0 14 1.1 09 20 0.1 14 241 0.8 1.5 1.3

This Table also shows large changes in the transient chaos lifetime for the
same initial conditions, but for different values of the control parameter
(technological mass of the mold with concrete m,). This change is clearly
visible in every column of the Table 3.

We would like to draw attention to the average lifetime. The average
transient lifetime is a quantitative measure of how long the transient chaos
exists. This is common characteristic of transient chaos [11, 17, 19]. It is often
calculated by averaging a large ensemble of realizations from 100 [11, 19],
100 and 10000 [11] to 3 million [17].

However, the difference in values in a Table 3 row for the same control
parameter value and different initial conditions is often very large. That is why
averaging should be carried out over a large ensemble of realizations. Fig. 13

shows the dependence of the average chaotic transient lifetime (T) on the
technological mass of the mold with concrete m,. As shown in Fig. 13 and in
Table 3, as m, is decreased, (T) increases dramatically.
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The average
transient lifetime
obeysan  exponential

law (T) =Ce "™ |

6320 6340 6360

my, ke where x>0.Then in a

logarithmic versus

) S linear scale we have a

6300 6320 6340 6360 6380 6400 straight line with slope

my, kg - k, k=0.089. The red

Fig. 13. Dependence of average chaotic transient lifetime <T> curve on linear-linear
on m, on a linear-linear plot and on a logarithmic versus linear plot and the red straight
scale (inset). All points are result of averaging 12 realizations line on a log-linear plot

were plotted according
to the exponential law and the equation of the straight line, respectively.

The slope « is called the escape rate. It is a quantity measuring how quickly
the trajectories initiated from random initial conditions escape any
neighborhood of the nonattracting chaotic set. In other words, how long the
transient chaos exists. Since the average lifetime depends on many details, the
escape rate k¥ is a more appropriate characteristic of the decay process than
(T). The escape rate is a unique property of the underlying nonattracting

chaotic set, in contrast to the average lifetime [21].

The initial conditions for Table 3 were chosen in different points of one
vibro-impact state. Now, Table 4 shows four different motions for two values
of the technological mass of the upper body (mold with concrete) when
choosing the initial conditions in different states of vibro-impact system.

Table 4
Lifetime of transient chaos t for two values of the control parameter when
choosing the initial conditions in different states of vibro-impact system

o oe 1, s for 1, s for Time series for the upper body at
Initial conditions m=6330 kg m=6400 kg m:=6330 kg
033
U“W\H !WH“\ \\!‘W‘W‘\” u i W
z A
In a quiescent state 6.15 1.83 L WWM i IWUHI‘ # Il WW\HM

0.025

0 10 15

';{)awwmwwmwwm,«mwwww
mopdesmen | [0z | 2

2402 2452 ts 2502 2552

| ‘\\W.\W“\N\‘w.‘.\\‘;ﬁ‘ ‘;.\‘ Ay

i < (kL |l
In a chaotic state at : l’l W
my= 5700 kg 8.45 1.58 & { '!'\"\""!'\“

3302 3352
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One can see the substantially different motion regimes. In the first and last
cases, the modes are similar, only transient chaos lifetime differs. The second
and especially the third cases are different. In the second case, the lifetime is
very short. In the third case, the transient chaos, even the transitional process,
is very, very short, almost nonexistent. Let’s repeat once more that transient
chaos of short lifetime may be difficult to identify. The motion pictures for
these two values of control parameter are similar, but the lifetimes are
different.

Note. As can be seen from Fig. 4 there are two coexisting regimes at
m, =5700 kg, which arise under different initial conditions, — a periodic

regime with a negative sign of the Lyapunov exponent and a chaotic regime
with a positive sign of the Lyapunov exponent. The initial conditions for
regimes in the third and fourth cases in Table 4 are chosen in these states.

It should be noted that the initial conditions in the rows of Table 4 are
substantially different. However, if we change the initial conditions very little,
then the transient chaos lifetime will still be different, despite the slight change
in the initial conditions. Table 5 shows this change for m, =6330 kg, when
only one variable in the initial conditions changes by a very small amount. Of
the five variables in the initial conditions, namely, ¢, ¥, ¥,, ¥, ¥, We

change only ;. In the 1¥ row y, is not changed, in the 2" row it changes in
such manner y, = y, +107'*, in the 3" row it changes as y, =y, +10™, in the

4" row V=W +107.

Table 5
Lifetime of transient chaos T with a very small change in initial conditions for
m,=6330 kg
Initial Transient
condition for lifetime Time series for the upper body at #11;=6330 kg
¥pm T8
oo u Nu \\\ml”nﬂm\ Il
(i ' T Huwm” O i
0.00038911750 6.09 ! \\W‘ JMMNWW\\\M i A N\\\\\u A A
B . M , N i M w Oy
0.00038911760 1.39 !\M‘\‘\\\‘\‘”W“'M«\u\‘\n\“m'\u\'uu'h\ N w’uW“"w‘“\\ﬁ‘\\u‘ WA
[ U .“ T “\‘ i \ e
0.00038911850 10.44 !\Mﬂ\pnﬂw’ﬂr\wvmrﬁ\mlpmﬁ‘\‘ﬂﬁ HJMWﬂ\rmi‘q\\\‘r‘\ JJMN\H\‘ AR
a:j‘ A A e ——
0.00038921750 110.23 T A A

We see how the slightest difference in the initial conditions leads to a big
difference in the life of transient chaos. In the fourth case, a huge increase in
the lifetime is observed, again we see a very long chaotic transient.
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Exactly this circumstance is unsafe and alarming. Small imperfections and
small deviations in the initial state of the nonlinear dynamical system can lead
to unwanted unpredictable results later. In particular, long-term weather
forecasts are often incorrect because of this.

Thus, Table 2, 3, 4, 5 clearly demonstrate the “waywardness” of a transient
chaos, that is, its strong dependence on both the values of the control
parameter and the initial conditions.

5. Conclusions

The model of platform-vibrator with shock corresponds to unusual 2-DOF
two-body nonlinear non-smooth discontinuous vibro-impact system with soft
impact. It exhibits transient chaos — a “wayward”, not fully understood
phenomenon that occurs in chaotic dynamical systems with varying the control
parameter. The technological mass of the mold with concrete was chosen as a
control parameter. We visibly showed the chaotic and periodic parts of the
signal and confirm the chaoticity of the former and the periodicity of the latter,
using their generally accepted characteristics, namely, phase trajectories,
Poincaré maps, Fourier spectra, the largest Lyapunov exponent, and surfaces
of wavelet coefficients. The dependence of the transient chaos on control
parameter value was demonstrated. We focused on the sensitive dependence of
the transient chaos on the initial conditions, that is, the basic feature of chaotic
dynamics. We have shown that the average transient lifetime obeys an
exponential law, which is typical to many chaotic systems. Both permanent
and transient chaos may often be dangerous and unwanted states. Therefore,
when operating the equipment, it is desirable to avoid the control parameter
range in which these states can occur.
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Cmamms naoditiwna 22.02.2021

Bbaoicenos B.A., [loeopenosa O.C., I[locmuikosa T.I'.
MEPEXIJTHUI XAOC B YIAPHO-BIGPALIITHOMY MANJAHYUAKY
VYaapHo-BiOpauifiHuii MalilaHYNK LIMPOKO 3aCTOCOBYEThCS Yy Oy[iBeNbHIM ramysi mist
yIIITBHEHHS Ta (pOPMYBaHHs BEIMKOra0apUTHUX OCTOHHUX BHPOOIB. Moro MatemaTHuHa MOZICITH,
sKa CTBOPEHa y Halli momepenHid poOOTi, BiANOBigae BCIM OCHOBHHM BHMOIaM yAapHO-
BiOpawuiiiHol TexHosOrii i BUPOOHMLTBA 30ipHOrO 3ami300€TOHY Ha HH3BKOYACTOTHHX
pe3oHaHCHHX Iuiaropmax-BiopaTopax. Mojenpb BilOBiae ABOX MacoBiii BiOpoyaapHiii cucTemi
3 JBOMa CTYNHSMH BUIBHOCTI 3 M’SKMM yzmapoM. Lle cuibHO HemiHiliHA Hernagka po3pHUBHA
CHCTEMa € HE3BHMYAMHOK BiOpOYIApHOK CHCTEMOO 3aBASKH CBOIM CHELU(BIYHUM BIACTHBOCTSIM.
BepxHe TiJI0 3 [yXKe BEIUKOI MAacOI0 BiPHBAETHCS Bifl HIKHBOIO HA y)KE MaJICHbKY BiACTaHb, a
HOTIM Maja€e Ha M’ SIKHH OOMEXHHK, 10 W BUKIMKaE M’skuil yaap. [ToTiM BOHO 3HOBY BillCKaKkye Ta
nagae i Tak gani. M'Kuil yaap MOIETIOEThCS HETiHIHHOK KOHTAaKTHOIO cuioio ['epua. Mozpens
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HPOIEMOHCTpYyBasia 0arato YHiKaJbHUX SIBUIL, BJIACTHBUX HEJIIHIHHUM HETJaIKUM JHUHAMIYHUM
cHCTeMaM IIPH 3MiHI KepyIuHx mapaMerpis. Y wiif poOoTi MU IeMOHCTPYEMO IepexinHuil xaoc y
BiOpoymapHiii cucremi. HasBHICTH mepexiqHOro XaocCyB yHapHO-BiOpauiiiHOMy MaiiaH4UKy €
YyJOBUM SIBULIEM CaMO 10 COOi, KpiM TOro JONOMAarae3po3yMiTH JWHAMI4HI IPOLECH, IO
BiIOyBalOThCsl B yAapHO-BIOpAI[iiHOMY MaiilaHYNKy NpPH 3MiHI TEXHOJIOTiYHOI MacH (GopMH 3
6eronom. da3oBi Tpaekropii, mepepisu Ilyankape, rpadiku mepemilieHb Ta KOHTAKTHHX CHIL,
cnektpu @yp'e, nokasHuku JlAnyHoBa Ta BEHBIET-XapaKTEPUCTHKU BHUKOPUCTOBYIOTHCS B
YHUCEIIbHHUX JOCIIDKCHHSX [JI BU3HAUCHHS XaOTHYHUX Ta MepioauuHux (a3 pearizanii. [Tokazano
SK 3QJICKHICTh IEPEXiJHOT0 XaoCy BiI 3HAYCHHS KEPYyIO4YOro Hapamerpa, TaK 1 YyTJIUBY
3aJIOKHICTh BiJl IOYaTKOBHX YMOB. MU CrIOAiBaEMOCh, 11O Iiell aHai3 MOXKE JOIOMOITH YHHKHYTH
HeOaXaHOI MOBEAIHKH yJapHO-BIOpaliiiHOro MaiiJaH4nKa MiJ 4yac eKcIulyartamii Ta migioparu
BIIIIOBIZHI [TapaMeTpH MPU MPOEKTYBAHHI, OCKIIBKH HEepeXifHUil Xaoc Moxe OyTH HeOe3nmeuHHM
Ta HeGaKaHUM CTaHOM BiOPOYJapHOI CHCTEMH.

KurouoBi cioBa: ynapHo-BiOpauiiiHuii MaiifaHdnk, BiOpO-yZapHHMil, TEXHOJIOTIYHAa Maca,
(hopma 3 6eTOHOM, TIEPEXiJHUI Xa0C, 3aJICKHICTh BiJl T0OYATKOBUX YMOB.

VK 539.3

Baoswcenog B.A., [Toeopenosa O.C., Ilocmuikosa T.I". Ilepexinuuii xaoc B ynapHo-piopauiiinomy
Maiinan4uuky // Omip maTepiaiiB i Teopis cropyn: Hayk.-tex. 30ipH. — K.: KHYBA. 2021. — Bum.
106. - C. 22-40. — AHri1.

Mamemamuuna mooenv yoapHo-6i0payiiinoco Maudanyurd, wo WUpPoKo 3ACmoco8yEmbCsy
0yOigenbHill 2any3i 015l YUIIbHEeHHS MA DOPMYSAHHA OEMOHHUX SUPOOI6,NPU 3MIHI KOHMPOILHUX
napamempie 0eMOHCMPYE HUZKY HeJIHIUHUX A8UW,30KpemMa make yikaee ma “‘npumxause’”’ seuuye,
SIK nepexionull Xaoc.

Tab6a 5. Puc. 13. bibaiorp. 30 Ha3s.

UDC 539.3

Bazhenov V.A., Pogorelova O.S., Postnikova T.G. Transient Chaos in Platform-vibrator with
Shock// Strength of Materials and Theory of Structures: Scientific-and-technical collected articles.
—K.: KNUBA. 2021. — Issue 106. — P. 22-40.

The mathematical model of platform-vibrator with shock, which is widely usedin the
construction industry for compacting and molding concrete products, exhibits many nonlinear
phenomena when varying the control parameters. In particular, there is transient chaos, which is
an interesting and “capricious” phenomenon.
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