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In this paper are presented peculiarities of wave propagation processes in porous media;
parameters that determine properties of fluid-saturated materials; basic methods for solution of
poroelastic problems, one of which is Boundary Integral Equation Method; boundary integral
equations and graphs of fundamental solutions functions versus frequency parameter.
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Introduction. Many natural and unnatural materials have pores structure
especially fluid- or gas-saturated soils, rocks and also porous building
materials: timbers, sandstones, bricks, fillers for light concretes. That’s why
investigation of wave propagation processes in porous bodies and media has
practical interest. Presence of filler changes the behavior of such materials
therefore laws of the theory of elasticity can’t be used for studying of wave
propagations in saturated materials.

1. Basic methods. In the end of XVIII century seriously problems of dams
and dikes building and necessity of understanding of cooperation and common
work of water and the solid ware a reason for first description of the porous
media. Now in civil construction problems of the soil-water processes are
described on the basis of the theory of the porous media that consists of the
theory of mixes and the conception of volume factions. The theory of mixes
was based on the mechanics of continuous media that is consists of multi-
component materials with different physical properties.

Mathematical modeling of the multi-component fluid- or gas-saturated
porous media began in thirties of last century. Works by Y.I. Frenkel [2] and
M.A. Biot [3, 4] were first works in this direction. In their works was given
great attention to models of the porous media dissipation and methods for
considering it in the equilibrium equations. Works by M.A. Biot are the linear
theory of the effective two phase media and are supposed as the basic and
classic theory for solving similar problems. In this works for the porous fluid-
saturated media the two phase model that is consists from the porous solid and
the fluid that fills up pores was proposed. Also additional parameters for
considering cooperation of these phases was introduced such as: the porosity,
the fluid viscosity, the permeability, the Biot coefficient of effective stress, the
mass densities, the shear modulus and the bulk modulus of the porous material.
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Procedures for determining these parameters are presented in works [4, 5].
Also analysis of porous materials properties are elucidated in works [6, 7, 8].

During analyzing of porous structures stress-strain stain is assumed that the
pores are disseminate uniformly in the body. The fluid- or gas-saturated porous
region when it’s considered from the point of view by the mechanics of the
continuous media is essentially the two-phase continuous media. The porous
solid elements are belonging to the first phase and the elements of pores fluid
filler are belong to the second phase. It should be taking into account during
studying of the peculiarities of the porous media behavior that are foredoomed
by differences of both phase mechanical properties. Breaking of all elements to
two classes is also needful because the difference of the one phase elements
behavior is less significant than of the different phase elements behavior. The
assumption remains that the elementary volume space is full of two continuous
media that can interact with each other. Also the fundamental characteristic of
the porous media is propagation of three different compression waves: the
longitudinal fast wave, the second longitudinal slow wave, and the third
transversal slow wave.

In nineties of twentieth century began to appear the science works that are
dedicated to studying of poroelastic problems and application of the Boundary
Elements Method and the Boundary Integral Equation Method for solving
these problems. The two-dimensional poroelastic equations ware represented
almost at the same time in works [9] 1 [10]. The equations [9] were written in
terms of the solid displacements and stresses and the fluid pressure when the
boundary integral equations in [10] were consists of the dynamic and
kinematic parameters.

One of the methods that now are used for solving systems of the
differential equations is the integral and numerical Laplace transformation.
This method was used to obtain the fundamental solutions for poroelastic
systems in [11, 12] where for solving the problems three phase model was
used in which porous skeleton is partially saturated by fluid and partially
saturated by gas. In [13] were presented the methods for numerical modeling
of the three-dimensional poroelastic bodies dynamic and for solving the model
problems about wave propagation in such bodies with different boundary
conditions. Solving the problem about elastic wave propagation in the porous
region that is not full of the fluid is adducing in [14] with presenting of the
differential equations for the not saturated space in three-dimensional
transform Laplace region. The work [15] presents the fundamental solutions
for the singular boundary integral equations of poroelasticity. Some aspects of
linear dynamic poroelasticity in the fluid-saturated bodies are in [16-20].
Despite the fact that now are presented a significant number of the singular
boundary integral equations variants are only unitary BE-solutions of the
poroelastic problems. That’s why questions are actual in this direction.

2. Basic Relations. Whereas the components of the different phases in the
porous elastic saturated media have the different densities the total density (the
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total mass of the fluid-solid aggregate per unit volume) should be considering
in calculation. It can be determined by the following expression [3]:

p:ps+ﬂ(pf_ps)a (1)
where f is the porosity of the porous solid, the parameters p, and p, are the
mass densities of the solid and fluid, respectively. Should be taking into
account the assumption that the relative motion between the solid and the fluid
is not exists.

Another peculiarity of the porous fluid-saturated media are, proposed by
M.A. Biot [3, 4] and analyzed in [6], the coefficients of the poroelastic
material: O, R, B i M that are expressed from the porosity S, the Biot
coefficient of effective stress a and the drained and undrained bulk modules of
elasticity K 1 K,;:
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where the coefficient « is determined:
7=BOR. ©

The bulk modules of elasticity are determined after three types of the
laboratory tests (the drained test, the unjacketed test and the undrained test) [6]:
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where V and V, are the primary volumes of the drained and undrained rock
samples; 4P is the incremental load in time that is applied on the rock as the
pressure; AV1 AV, are the volume changes of the drained and undrained samples.
The algorithmic bases of the BEM are the boundary analogues of
Somiliani’s formulas for the solid displacements and the fluid pressure that

under zero body conditions can be written [9]:
cyu+ [t dl+ [TUdr= [ujtdl+ [wUdr 9)

r r r r
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where ¢ is the coefficient that is equal 0.5 for points where the boundary is
smooth, u;, U, t;, v are the displacements and stresses in the solid and fluid
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: . 2 * %
pressure; 7 is the normal to the boundary; J =1/(iwb—o" py,); Uy, t; > T

U :j are the weighting displacement fields or the fundamental solutions. The
first components of the fundamental solution tensors may be written as:

3 .
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where 4,, are the wave numbers that can be obtained as the roots of the
characteristic equation; K,(i,r) is the modified Bessel functions;
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When similar fundamental solutions for the elastic region are:
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where p is the density of the elastic material; ka=cﬂ; C=J(A+2w)/p,
o

C, =4/ p are the velocities of elastic wave propagation.
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Figures present the graphs of the fundamental solutions functions: the
displacements w1, u1n, up, (fig. 1, 2, 3) and the stresses #1, 2, £ (fig. 4, 5, 6)
versus frequency parameter wr/C,. The curves with designation 1 correspond
to the graphs of functions for elastic media and the curves with designation 2
correspond to the graphs of functions for poroelastic fluid-saturated media,
respectively.

Conclusion. The graphs of the weighting displacements and stresses fields
functions for the elastic and poroelastic regions have different characters and
different values depending on the frequency parameter because the body with
gas- or fluid-saturated pores is differ from the continuous homogeneous elastic
media and it should be modeling with applying of the two phase or the three
phase model and the poroelastic equations with additional poroelastic
parameters. Figures show that the graphs for the poroelastic region may be
gradual approximated to the elastic analogues during changing some
parameters. On the graphs in the figures 1-3 was changing of the parameter R
namely gradual increase of it for the some order (curves 3, 4, 5). When the
graphs of generalized derivatives functions on the figures 4-6 had changing of
the parameter O — one gradual increase for one order was enough (curves 3).
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Kapa 1]].
OCOBJIMBOCTI IPOLIECIB IOLIMPEHHSI XBUJIb B TIOPOIIPY KHOMY
CEPEJOBHMIII

Ipy nocmipKeHHI IPOLECiB PO3MOBCIOMKCHHS XBIUJIb B HACHYCHHUX ITOPUCTHX CEPEIOBHILAX,
Ha BIAMIHY BiJ Teopii IpyKHOCTI, Ma€ mpuiMaTUCh 3amporoHoBana M.A.bio nBodasna moznens
CepeloBHIIA, B SIKiH 10 nepuIoi a3y HaJleKaTh TBEPAI YACTOUKH IOPHCTOr0 KapKacy, a 10 Apyroi
BIHOCSTBCSL €JIEMCHTH DIAMHH, sKa 3aloBHIOE IMOpU. [HOmI Uit 3amady BHKOPHCTOBYETHCS
TpudazHa MOAENb CEpPENOBHINA, B sKii NOPHCTHH NPYXHHII KapKac YacTKOBO 3alOBHEHUM
PIAMHOI0, YacTKOBO ra3oM. /Jlsi HPY)XHOrO IIOPUCTOrO CEPENOBHINA BBOISTHCS I[apaMeTpH,
30KpeMa: MOPHCTICTb, B’A3KICTh PiIMHH, MPOHHKHICTH, KoeilieHT epeKTUBHUX HAmpyxeHb bio,
MOIysi 3CyBy Ta O0’€MHOrO CTHCHCHHS, e(EeKTHBHI INIIBHOCTI Ta Yy3arajbHEHa TI'yCTHHA
nopucroro mMarepiaiy. Takox (yHIaMEHTAIbHOIO BIACTHBICTIO NPYXXHO-IIOPHUCTOTO HACHYCHOTO
CepefloBHUIA € Te, I0 B HHOMY MOXYTb PO3MOBCIOUKYBATHCh TPH THIIM XBHJIb, a caMme: ABI
03/I0BXKHI XBWJIi: IIBUJKA i MOBiJIbHA, & TAKOX IIONEpeYHa MoBiibHA XBHJIS. OMHUM i3 METOMIB
po3B’si3aHHS [po0JIeM MOPONPY)XKHOCTI € METOJ TPaHUYHHUX IHTErPaJbHUX  PIBHSHb.
ANTOPUTMIYHOIO OCHOBOIO METOIY € IpaHH4Hi aHaisoru Gpopmynn ComimiaHH Ul EpPEeMIIleHb B
IPY)KHOMY CKeJeTi i THCKy B pimuHi. ['paHuuHi iHTerpasbHi piBHAHHA Ta (yHIaMEHTaJIbHI
PO3B’SI3KU, SIKI BXOAATH 1O CKJIAAy pIBHSHb IIOPONPYXKHOCTI, CYTTEBO BiIPI3HAIOTBCS BIX
AHAJOTIYHUX B TEOPIi MPYXKHOCTI, OCKIIBKU TiJIO, B IKOMY MICTSTBCS 3aIlIOBHEHI PiIMHOIO IIOPH,
BIIPI3HAETHCS Bif CYLIIBHOTO OJHOPIZHOrO IMPYXXHOrO CEPENOBHIIA. 3 PUCYHKIB BHIHO, L0
3MIHIOIOYH NIEBHI HapaMeTpH, rpadiki AJs MOPONPYXKHOI 00JIaCTi MOXKHA HOCTYIIOBO HAOIIKATH
10 aHaJIOriyHuX Ui npyxHoi. HailGinpmmit BIutB Ha (yHKLIT nepeMilieHb Aae 3MiHa apamerpa
R a came moctynoBe 30ibIIeHHS HOro Ha JeKinbka MopsakiB. B Toif yac sk s 3mMiHu rpadikis
(yHKIIH y3araabHEHHX MOXIAHUX (HYHIAMEHTAJIBHOIO PO3B’I3KY AOCTATHHO OJHOTO 301MIbIICHHS
Ha MOPSI0K 3HAUCHHsI apameTpa Moayst Q.

Ki104o0Bi cjioBa: MOPOINPYKHICTh, MOPUCTE CEPEJOBHILE, I'PAHUYHI IHTErpabHi PiBHAHHS,
(yHIaMeHTaIbHUH PO3B’SI30K.

Kara I.D.
PECULIARITIES OF WAVE PROPAGATION PROCESSES IN POROELASTIC MEDIA

During analyzing of wave propagation processes in the fluid-saturated porous media unlike
the theory of elasticity should be applied proposed by Biot the two phase model of media in which
porous the solid elements are belonging to the first phase and the elements of pores fluid filler are
belong to the second phase. Sometimes, for solving problems three phase model are used in which
porous skeleton is partially saturated by fluid and partially saturated by gas. For the elastic porous
media are introduced parameters such as: the porosity, the fluid viscosity, the permeability, the
Biot coefficient of effective stress, the shear modulus and the bulk modulus, the mass densities and
the total density of the porous material. Also the fundamental characteristic of the porous media is
propagation of three different compression waves: the longitudinal fast wave, the second
longitudinal slow wave, and the third transversal slow wave. One of the methods that are used for
solving problems of poroelasticity is the Boundary Integral Equation Method. The algorithmic
bases of it are the boundary analogues of Somiliani’s formulas for the solid displacements and the
fluid pressure. The boundary integral equations and the fundamental solutions that are comprised
in the poroelastic equations are different from the theory of elasticity analogues because the body
with fluid-saturated pores is differ from the continuous homogeneous elastic media. Figures show
that the graphs for the poroelastic region may be gradual approximated to the elastic analogues
during changing some parameters. The biggest influence for displacements functions has change
of the parameter R especially gradual increase of it for the some order. When for changing the
functions graphs of the generalized derivatives one gradual increase of the parameter Q for one
order is enough.

Key words: poroelasticity, porous media, boundary integral equations, fundamental solution.
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