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The main research goal is the development of a numerical methodology for solving parametric
optimization problems of steel structures with orientation on software implementation in a
computer-aided design system. The paper has proposed a new mathematical model for parametric
optimization problems of steel structures. The design variable vector includes geometrical
parameters of the structure (node coordinates), cross-sectional dimensions of the structural
members, as well as initial pre-stressing forces introduced into the specified redundant members of
the structure. The system of constraints covers load-carrying capacities constraints formulated for
all design sections of structural members of the steel structure subjected to all ultimate load case
combinations. The displacements constraints formulated for the specified nodes of the steel
structure subjected to all serviceability load case combinations have been also included into the
system of constraints. The method of the objective function gradient projection onto the active
constraints surface with simultaneous correction of the constraints violations has been used for
solving the parametric optimization problem. A numerical algorithm for solving the formulated
parametric optimization problems of steel structures has been developed in the paper. The
comparison of the optimization results of truss structures presented by the paper confirms the
validity of the optimum solutions obtained using the proposed numerical methodology.

Keywords: parametric optimization, steel structures, nonlinear programming, buckling
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Introduction. Over the past 50 years, numerical optimisation and finite
element method have individually made significant advances and have
together been developed to make possible the emergence of structural
optimisation as a potential design tool. In recent years, great efforts have been
also devoted to integrate optimisation procedures into the CAD facilities. With
these new developments, lots of computer packages are now able to solve
relatively complicated industrial design problems using different structural
optimisation techniques.

Applied optimum design problems for the bar structures in some cases are
formulated as parametric optimisation problems, namely as searching problems
for unknown structural parameters, whose provide an extreme value of the
specified purpose function in the feasible region defined by the specified
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constraints. In this case structural optimisation performs by variation of the
structural parameters when the structural topology, cross-section types and node
type connections of the bars, the support conditions of the bar system, as well as
loading patterns and load design values are prescribed and constants. Besides,
the mathematical model of the parametric optimization problem of the structures
includes the set of design variables, the objective function, as well as constraints,
whose reflect in general case non-linear interdependences between them [13].

In cases if the purpose function and constraints of the mathematical model
are continuously differentiable functions, as well as the search space is smooth,
then the parametric optimization problems are successfully solved using
gradient-based non-linear methods [14, 16]. The gradient-based methods operate
with the first derivatives or gradients only both of the objective function and
constraints. The methods are based on the iterative construction such sequence of
the approximations of the design variables that provides the convergence to the
optimum solution (optimum values of the structural parameters) [5, 6].

Additionally, a sensitivity analysis is a useful optional feature that could be
used in scope of the numerical algorithms developed based on the gradients
methods [10].

Although many papers are published on the parametric optimization of steel
structures, the development of a general computer program for the design and
optimization of building structures according to specified design codes remains
an actual task. Therefore, the main research goal is the development of a
methodology for solving parametric optimization problems of steel structures
with orientation on software implementation in a computer-aided design system.

In this paper, steel structures are considered as research object, which
investigated for the searching for optimum parameters of the structural form.
The following research tasks are formulated: to develop a mathematical model
for parametric optimization of steel structures taking into account load-
carrying capacities and stiffness constraints; to propose a numerical algorithm
for parametric optimization of steel structures based on the gradient projection
method; to confirm the validity of the optimum solutions obtained using the
proposed methodology based on numerical examples.

1. Problem formulation for parametric optimization of steel
structures. Let us consider a parametric optimization problem of a structure
consisting of bar members. The problem statement can be performed taking
into account the following assumptions widely used in structural mechanic
problems: the material of the structure is ideal elastic; the bar structure is
deformable linearly; external loadings applied to the structure are quasi-static.

Let us also formulate the following pre-conditions for calculation: cross-
section types and dimensions of structural members are constant along
member lengths; external loadings are applied to the structural members
without eccentricities relating to the center of mass and shear center of its
cross-sections; an additional restraining by stiffeners are provided in the design
sections where point loads (reactions) applied with the exception of cross-
section warping and local buckling of the cross-section elements; load-carrying
capacity of the structural joints, splices and connections are provided by
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additional structural parameters do not covered by the considered parametric
optimization problem.

A parametric optimization problem of the structure can be formulated as
presented below: to find optimum values for geometrical parameters of the
structure, member’s cross-section dimensions and initial pre-stressing forces
introduced into the specified redundant members of the bar system, which
provide the extreme value of the determined optimality criterion and satisfy all
load-carrying capacities and stiffness requirements. We assume, that the
structural topology, cross-section types and node type connections of the bars,
the support conditions of the bar system, as well as loading and pre-stressing
patterns are prescribed and constants.

The formulated parametric optimization problem can be considered
integrally using the mathematical model in the form of the non-linear
programming task including an objective function, a set of independent design
variables and constraints, which reflect generally non-linear dependences
between them. The validity of the mathematical model can be estimated by the
compliance of its structure with the design code requirements.

The parametric optimization problem of steel structures can be stated in the
following mathematical terms: to find unknown structural parameters

X = {XZ}T, 1=1L N, , providing the least value of the determined objective
function:

[ =/X)=min f(X), (1.1)
in a feasible region (search space) I defined by the following system of
constraints:

w(X)={y, (X)=0|x=TN,}, (1.2)
o(X)={4,(X)<0|n=N, +LN,}, (1.3)

where X is the vector of the design variables (unknown structural
parameters); f, ., ¢, are the continuous functions of the the vector
argument; X  is the optimum solution or optimum point (the vector of
optimum values of the structural parameters); f~ is the optimum value of the
optimum criterion (objective function); N,. is the number of constraints-

equalities (X), whose define hyperplanes of the feasible solutions; N o 18

the number of constraints-inequalities ¢, (X), whose define a feasible region

in the design space 3.
The vector of the design variables comprises of unknown geometrical

- T
parameters of the structure X, ={XG’Z} , X=1,N,,, unknown cross-

. . . e T
sectional dimensions of the structural members X = {X Cs’a} , a=LN, ,
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as well as unknown initial pre-stressing forces X, = {Xps’ﬁ}r, B=1LNy s,
introduced into the specified redundant members of the structure (see
Figure 1.1):

X = {X,Gaicsaim}r = {{XG,Z}’{XCS,a}’{XPS,[i}}T > (1.4)
where N, ;. is the total number of unknown node coordinates of the steel
structure; N, . is the total number of unknown cross-sectional dimensions of
the structural members, N, ,¢ is the total number of unknown initial pre-

stressing forces introduced into the specified redundant members of the bar
system, N, .+ Ny s+ Ny oo =N,
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Fig. 1.1. The unknown (variable) parameters of the structure considered as design variables

In cases when vector of the design variables X consists of unknown cross-
sectional dimensions only:

- - T
X=XCS={XCS,a} > (1.5)
then optimum material distribution problem (1.1)—(1.3), (1.5) for the steel
structure is under consideration. The vector of the design variables X can also

. e T
consists of unknown initial pre-stressing forces X, = {X - ﬁ} s B=LNy s,

introduced into the specified redundant members of the structure:
T

- - — T
X ={ Ko K| ={{Xes (Koo )} - (1.6)
where N, o+ N, ,c =N,. In cases when vector of the design variables X

consists of unknown cross-sectional dimensions and unknown initial pre-
stressing forces, then optimum material and internal forces distribution
problem (1.1) — (1.3), (1.6) for the steel structure is under consideration.

The specific technical-and-economic index (material weight, material cost,
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construction cost etc.) or another determined indicator can be considered as the
objective function (1.1) taking into account the ability to formulate its

analytical expression as a function of design variables X .

Load-carrying capacities constraints (strength and stability inequalities) for
all design sections of the structural members subjected to all design load
combinations at the ultimate limit state as well as displacements constraints
(stiffness inequalities) for the specified nodes of the bar system subjected to all
design load combinations at the serviceability limit state should be included
into the system of constraints (1.2)—(1.3). Additional requirements whose
describe structural, technological and serviceability particularities of the
considered structure can be included into the system (1.2) — (1.3) as well.

The design internal forces in the structural members used in the strength
and stability inequalities of the system (1.2) —(1.3) are considered as state
variables depending on design variables X and can be calculated from the
following linear equations system of the finite element method [7]:

K(XG’XCS)XZULS,k = ﬁULS,k(XG’XPS) , k= LNULS (1.7)

LC »

where K(X,,X) is the stiffness matrix of the finite element model of the
bar system, which should be formed depending on the unknown (variable)

cross-sectional dimensions of the structural members X as well as

cs o
unknown (variable) node coordinates of the structure X, o3 Duisk ()? G,)? ps) 18

the column-vector of the node’s loads for k™ design load combination of the
ultimate limit state, which should be formed depending on unknown (variable)

o

initial pre-stressing forces X as well as unknown (variable) node

PS?
coordinates of the structure X ; Zyys, 1 the result column-vector of the node
displacements for k™ design load combination of the ultimate limit state,
Zrss = Lo (X s X o, X pg) = 205, (X) 5 NI is the number of the design
ultimate load combinations. For each ;™ design section of ;™ structural
member subjected to k " ultimate design load combination the design internal

forces (axial force, bending moments and shear forces) can be calculated
depending on node displacement column-vector Z , .

The node displacement of the bar system used in stiffness inequalities of
the system (1.2) —(1.3) are also considered as state variables depending on

design variables X and can be calculated from the following linear equations
system of the finite element method [7]:

K(XG’XCS)XZSLS,k = ﬁSLS,k(XG’XPS) , k= LNSLS (1.8)

LC >
where P, (X »s) is the column-vector of the node’s loads for k™ design
load combination of the serviceability limit state, which should be formed

depending on unknown (variable) initial pre-stressing forces X, , as well as

PS>
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unknown (variable) node coordinates of the structure X, ; Zyys, 18 the result
column-vector of the node displacements for k™ design load combination of

the serviceability limit state, Z;,¢, = Zeny , (X s Xego X ps) = Ly (X5 Ni&

is the number of the design serviceability load combinations. For each m ™
node of the finite element model subjected to k™ serviceability design load
combination the design vertical and horizontal displacements can be calculated
depending on node displacement column-vector Zg , .

The system of constraints (1.2) — (1.3) should cover strength and stability
constraints formulated for all design sections of all structural members of the
considered steel structure subjected to all design load combinations at the
ultimate limit state. The following strength constraints should be included in
the system of constraints (1.2) —(1.3), formulated for all design sections,

Vi =1,_NDS, of all structural members, Vj=1,N, , subjected to all ultimate

B

load case combination, Vk =1, N} , namely:
- normal stresses verifications:
o (X
T ; (1.9)
Ryy.
- shear stresses verifications:
T (X
LINGORNPPY (1.10)
0.58Ry.

- as well as equivalent stresses verifications:

Oy (X) | O30, (D)
1.15Ryyl, 1.15Ryyl,

<0, (L11)

where o, .« (X) are sk (X) are the maximum value of the normal and

shear stresses respectively caused by internal forces (axial force, bending
moments and shear forces) acting in i ™ design section of ;™ structural

member subjected to & ™ ultimate load case combination calculated from the
linear equations system of the finite element method (1.7); y, is the safety

factor [4]; R, is the design strength for steel member subjected to tension,
bending and compression; Ry, 0.58R y, and 1.15R y, are allowable values
for normal, shear and equivalent stresses respectively [4]; N, is the number
of design sections in structural members; N, is the number of structural

members; 0, (X), T ik (X) and O v ik (X) are normal, shear and equivalent

stresses respectively at the specified cross-section point caused by internal
forces acting in i ™ design section of ;™ structural member subjected to & ™

ultimate load case combination calculated from the linear equations system of
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the finite element method (1.7). The maximum value of the normal o, ., (X)

and shear stresses 7, .. (X), as well as normal O, (X), shear T ik (X) and

m:

equivalent o, (X) stresses at the specified cross-section point should be

calculated depending on the variable geometrical parameters of the structure

X, , variable initial pre-stressing forces X,; and variable cross-sectional

dimensions of the structural members X, .
The following stability constraints should be included in the system of
constraints (1.2) —(1.3), formulated for all design sections, Vi=1,Np,

ULS
LC »

- flexural buckling verifications for all column structural members,
Vi=1,Ng, :

subjected to all ultimate load case combination, Vi =1, N namely:

o (X

L“a“fi( ) -1<0, (1.12)
(py,j (XG 4 XCS )Ryyz‘

o (X

g (X) 1<0; (1.13)

9., (Xe Xc5)R Y.
- torsional-flexural buckling verifications for all column structural
members, Vj=1,N,, :
Ot X)
9., (Xo Xes)R, 7,
- lateral-torsional buckling verifications for all beam structural members,

1<0; (1.14)

O-max,zf/‘k (‘X/) _
(pb,j (XG 4 XCS )Ryyl‘
where ¢, (X, X5) and ?.; (X.,X.) are column’s stability factors

1<0, (1.15)

corresponded to flexural buckling relative to main axes of inertia and calculated
depending on the design lengths / / cross-section type and cross-

of.y.j> “ef.zj?

section geometrical properties for the ;™ structural member [4]; (pL,’j()%( G,f( cs)

is the column’s stability factor corresponded to torsional-flexural buckling and
calculated depending on the design lengths !/ / lyr » cross-section

type and cross-section geometrical properties for the ;j ™ structural member[4];

o .y.j? o)
Ny, is the number of column structural members; @, ; (X, Xo5) is the beam’s

stability factor corresponded to lateral-torsional buckling and calculated
depending on the design length [, , cross-section type and cross-section
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geometrical properties for the j ™ structural member [4]; N oy 18 the number of
beam structural members. The flexural buckling factors ¢ (X4 X)) and
?.; (X, Xcs) » as well as torsional-flexural buckling factor (pL,’j()%( > X os)and
the lateral-torsional buckling factor ¢, (X;,X.5) should be calculated
depending on the variable geometrical parameters of the structure X, . and

variable cross-sectional dimensions of the structural members X .

The following buckling verifications for beam-column structural members
should also be included in the system of constraints (1.2) — (1.3), formulated for

all design sections, Vi =1,_NDS, of all beam-column structural members,

Vj=1,N,,, » subjected to all ultimate load case combination, Vk =1,N/- ,

namely:
o (X
Ot (X)_ -1<0, (1.16)
(pe,ijk (X)Rny
o (X
= “E‘W( )4 -1<0, (1.17)
(py,j (XG B Xcs )c,;,’k (X)Ryyc
where @, (X) and i (X) are beam-column’s stability factors corresponded

to in-plane and out-of-plane buckling and calculated depending on the internal
forces (ration of the bending moment to the axial force), as well as depending
on the design lengths [ / cross-section type and cross-section

geometrical properties for the ;™ structural member [4]; N, scn 18 the total

of.y.j> Cefzj?

number of beam-column structural members, N, + N, +N,, =N,. The
beam-column’s stability factors ¢, (X) and i (X) should be calculated
depending on variable geometrical parameters of the structure X, ¢ » variable
cross-sectional dimensions of the structural members X, and variable initial

pre-stressing forces X, .

The following local buckling constraints should also be included into the
system of constraints:

IW ‘(yCS)

— - _1<0, 1.18
ﬂ’uw,j()() ( )
A (X

M—lso, (1.19)
ﬂ’uf,j(X)

where Iw’j(i o) and I ' (X,s) are the non-dimensional slenderness of the

web and flange respectively of the cross-section for ;™ structural member;
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)_LWJ()? ) and )_W’j(f( ) are the maximum values for corresponded non-

dimensional slenderness for column, beam and beam-column structural
members calculated depending on the internal forces (ration of the bending
moment to the axial force), as well as depending on the design lengths /

l

of.y.J°
cross-section type and cross-section geometrical properties for the ;™

oz
structural member [4]. The non-dimensional slenderness )_uw’j()ﬁ(cs) and
ZN()? cs) should be calculated depending on the variable cross-sectional
dimensions of the structural members X, only. At the same time, the
maximum values for corresponded non-dimensional slenderness £, m,’j(f( ) and
)_W’j(f( ) should be calculated depending on the variable geometrical
parameters of the structure X, and variable cross-sectional dimensions of the

structural members X, and variable initial pre-stressing forces X .

The system of constraints (1.2) — (1.3) should also cover the displacements
constraints (stiffness inequalities) for the specified nodes of the considered
steel structure subjected to all design load combinations at the serviceability
limit state. The following horizontal and vertical displacements constraints
should be included into the system of constraints (1.2) — (1.3), formulated for

all nodes, Vm=1,N,, , of the steel structure subjected to all serviceability load

case combination, Vk =1,N;:* , namely:
5 (X
0@ 1oy, (1.20)
5ux,m
5 (X
Oem®) oy (1.21)

where 6, (X) and 0. 4 (X) are the horizontal and vertical displacements

respectively for/ ™ node of the steel structure subjected to & ™ serviceability load
case combination calculated from the linear equations system of the finite
element method (1.8); J,,, and 6, , are the allowable horizontal and vertical

displacements for /™ structural node; N, is the number of nodes in the

considered steel structure.

Additional requirements, whose describe structural, technological and
serviceability particularities of the considered structure, as well as constraints
on the building functional volume can be also included into the system (1.2) —
(1.3). In particular these requirements can be presented in the form of

constraints on lower and upper values of the design variables, Vi=1,N, :



ISSN 2410-2547 201
Omip MatepianiB i Teopis copya/Strength of Materials and Theory of Structures. 2020. Ne 105

1-—L <0, (1.22)

% -1<0, (1.23)
where X/ and X are the lower and upper bounds for the design variable X, .
2. An improved gradient projection method for solving the formulated
parametric optimisation problem. The parametric optimization problem
stated as non-linear programming task by (1.1) — (1.3) can be solved using a
gradient projection method. The method of objective function gradient
projection onto the active constraints surface with simultaneous correction of
the constraints violations ensures effective searching for solution of the non-
linear programming tasks occurred when optimum designing of the building
structures [9, 11].
The gradient projection method operates with the first derivatives or
gradients only of both the objective function (1.1) and constraints (1.2) — (1.3).
The method is based on the iterative construction of such sequence (2.1) of the

approximations of the design variables X = {X : }T , 1=1,N, , that provides the
convergence to the optimum solution (optimum values of the structural
parameters):

X, =X +AX,, 2.1

where )?t ={XI}T, 1=1,N, is the current approximation to the optimum

solution X~ that satisfies both constraints-equalities (1.2) and constraints-
inequalities (1.3) with the extreme value of the objective function (1.1);

AX, = {AX : }T , 1=1,N, , is the increment vector for the current values of the

design variables X .5 t 1s the iteration’s index. The start point of the iterative

searching process X, , can be assigned as engineering estimation of the

admissible design of the structure.
The active constraints only of constraints system (1.2) —(1.3) should be
considered at each iteration. A set of active constraints numbers A calculated

for the current approximation X . to the optimum solution (current design of
the structure) is determined as:

wk(it)‘z—g},nz{NEC+n ¢n()?t)2—s}, (2.2)

where ¢ is a small positive number introduced here in order to diminish the
oscillations on movement alongside of the active constraints surface.

A=xuUn, K={K“

The increment vector AX, for the current values of the design variables

X . can be determined by the following equation:
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AX, = AX'| +AX], (2.3)
where AX ' is the vector calculated subject to the condition of elimination the

constraint’s violations; AXH' is the vector determined taking into consideration

the improvement of the objective function value. Vectors A)?HI and AX ' are
directed parallel and perpendicularly accordingly to the subspace with the
vectors basis of the linear-independent constraint’s gradients, such that:
RN
(aX1) aX;=o0. (2.4)

The values of the constraint’s violations for the current approximation X,

of the design variables are accumulated into the following vector:
V= (l//K(X)VK' €x; ¢,(X)Vne 1]) .
Let us introduce a set L, L < A, of the constraint’s numbers, such that
the gradients of the constraints at the current approximation X ., to the
optimum solution are linear-independent.

Component AX ' is calculated from the equation presented below:
AX! =[Voli,, (2.5)
og,

and —, here

1 l

K

where [Vgo] is the matrix that consists of components

z=m, keL, neL; # is the column-vector that defines the design
variables increment subject to the condition of elimination the constraint’s
violations. Vector fi, can be calculated as presented below.

In order to correct constraint’s violations V, vector AX " to a first
approximation should also satisfy Taylor’s theorem for the continuously
differentiable multivariable function in the vicinity of point )?t for each
constraint from set L , namely:

-V =[Vo] AX'. (2.6)

With substitution of (2.5) into (2.6) we obtain the system of equations to
determine column-vector i, :

[Vgo]r [Vgo]ﬁl =-V. (2.7
Component A)?HI is determined using the following equation:
AX| =&x =& (V/ ~[Voli). 38)

where Vf is the vector of the objective function gradient in the current point
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(current approximation of the design variables) X, S favf is the projection of
the objective function gradient vector onto the active constraints surface in the
current point X, ; #y is the column-vector that defines the design variable’s

increment subject to the improvement of the objective function value. Column-
vector F‘H can be calculated approximately using the least-square method by

the following equation:

[Vold ~Vf, 2.9)
or from the equation presented below:
Vol [Voli =[Ve] V1, (2.10)

where £ is the step parameter, which can be calculated subject to the desired
increment Af of the purpose function on movement along the direction of the

purpose function anti-gradient. The increment Af can be assign as 5...25%

from the current value of the objective function f ()? t) :
Af=§(V]‘)TV]‘,§=%a @.11)
(V7) vf
where in case of minimization (1.1) Af and & accordingly have negative
values. The parameter £ can be also calculated using the dependency
presented below:

g=—
T (2.12)

that follows from the condition of attainment the desired increment of the
objective function Af on the movement along the direction of the objective

function anti-gradient projection onto the active constraints surface. Step
parameter £ can be also selected as a result of numerical experiments

performed for each type of the structure individually [6, 15].
Using (2.5) and (2.8), (2.3) can be rewritten as presented below:
AX, =[Vo] ji, +&(V -[Ve] ) (2.13)
or
AX, =& Vf +[Vo)(d, -& i), (2.14)
where column-vectors fi, and F‘H are calculated using (2.7) and (2.9) or
(2.10), respectively.
The linear-independent constraints of the system (1.2) —(1.3) should be
detected when constructing the matrix of the active constraints gradients [Vgo]

used by (2.7) and (2.9) or (2.10). Selection of the linear-independent
constraints can be performed based on the equivalent transformations of the



204 ISSN 2410-2547
Omip MatepianiB i Teopis copyx/Strength of Materials and Theory of Structures. 2020. Ne 105

resolving equations of the gradient projection method using the non-degenerate
transformation matrix H, such that the sub-diagonal elements of the matrix

H[V¢] equal to zero. An orthogonal matrix of the elementary mapping
(Householder’s transformation) [17] has been used to select linear-independent
constraints of the system (1.2) — (1.3) as well as to form triangular structure of
the nonzero elements of matrix H[V¢] [12].

Using Householder’s transformations described above triangular structure
of the nonzero elements of matrix H[V¢] is formed step-by-step. Besides,
(2.7) and (2.9) can be rewritten as follow:

([Vgo]T H’ )(H[Vgo])ﬁl -V, (2.15)

H[Vo]i ~HVf . (2.16)

Equivalent Householder transformations of the resolving equations (2.15),
(2.16) have been proposed by the paper [12]. They increase numerical
efficiency of the algorithm developed based on the considered method.

In order to calculate column-vectors £, and [iH, it is required only to
perform forward and backward substitutions in (2.15) and (2.16).

To accelerate the convergence of the minimization algorithm presented
above, h™ columns should be excluded from matrix H[Vgo]. These columns
correspond to those constraints from (1.3), for whose the following inequality
satisfies:

My —Ex ey, >0. (2.17)

°
o

7,
%
7%
Z
%
%
%
2

(@) (b)
Fig. 2.1. The selection of the constraints-inequalities:
(3)7 HLh_élxﬂh <0 ;(b)7 lhh—flelh >0.

Actually, when u,, —&x u, >0, then the return onto the active constraints
surface from the feasible region J is performed with simultaneous
degradation of the objective function value (see Fig. 2.1b). At the same time,
in case of u,, —&xu, <0, both the improvement of the objective function
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value and the return from the inadmissible region onto the active constraints
surface are performed (see Fig. 2.1a).

When excluding 4™ columns from matrix H[Vgo] corresponded to those

constraints for whose (2.17) is satisfied, the matrix (H[Vgo])ml with a broken

(non-triangular) structure of the non-zero elements is obtained. The set L of
the linear-independent active constraints numbers transforms into the set L_,
respectively. At the same time, the vector of the constraint’s violations V
reduced into the vector V,, accordingly. In order to restore the triangular

structure of the matrix (H[Vgo])ml with zero sub-diagonal elements, Givens

transformations (Givens rotations) [17] can be used.
Considering Givens transformations, (2.15) and (2.16) for column-vectors

(4,),, and ( ﬁf)m} can be rewritten as:
(VoI 0") G'G(H[Ve]) (L), = V... 2.18)

G(H[Ve]) (i) ~GHVS. (2.19)

Equivalent transformations of the resolving equations (2.18), (2.19) using
Givens rotations (transformations with matrix G ) ensure acceleration of the
iterative searching process (2.1) in those cases when (2.17) takes into account
due to decreasing the amount of calculations [12].

The main resolving equation of the gradient method (2.13) and (2.14) can
be rewritten as presented below:

A‘X}t = (H[Vgo])red (ﬁi )red +¢ (Vf _(H[Vgo])r(:d (ﬁH )red) (2.20)
A‘X}f =¢ Vf+(H[v¢]);'ed ((ﬁi )red _é(ﬁ\\ )red) ’ (2.21)

It should be noted that the lengths of the gradient vectors for the objective
function (1.1), as well as for constraints (1.2) —(1.3), remain as they were in
scope of the proposed equivalent transformations ensuring the dependability of
the optimization algorithm [12].

The determination the convergence criterion is the final question when
using the iterative searching for the optimum point (2.1) described above.
Considering the geometrical content of the gradient steepest descent method,

we can assume that at the permissible point )?t the component of the
increment vector A)?Ht for the design variables should be vanish, AX, Ht —0,in

case of approximation to the optimum solution of the non-linear programming
task presented by (1.1) — (1.5). So, the following convergence criterion of the
iterative procedure (2.1) can be assigned:

AX"

[l

) <&, (2.22)
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where ¢, is a small positive number. In the paper [12] the convergence criteria

for the iterative procedure (2.1) has been presented in detail.

3. A parametric optimization algorithm based on the gradient
projection method. Let us presented the following numerical algorithm to
solve the parametric optimization problem for steel structures formulated
above.

Step 1. Describing an initial design (a set of design variables) and initial
data for structural optimization.

The design variable vector X P =()?6, X X »s); should be specified,

where k is the iteration index, k£ =0. The structural topology, cross-section
types and node type connections of the bars, the support conditions of the bar
system, as well as loading and pre-stressing patterns, load case combinations
and load design values are prescribed and constants.

Initial data for optimization of the considered steel structure are design
strength for steel member R, safety factor y,, factors to define flexural

design lengths /., [, .. and flexural-torsional design length /, ,
column structural members; factor to define lateral-torsional design length

ly,,; for all beam structural members; allowable values for horizontal and

cs»

for all

vertical displacements 6,,, and J,_, of the specified nodes of the considered
steel structure; lower X* and upper X" bounds for the design variables; as

well as specified objective function f ()? )

Step 2. Calculation of the geometrical and design lengths for all structural
members.

The geometrical lengths /, of all structural members are calculated based
on the node coordinates of the considered steel structure. The latter depend on
the unknown (variable) geometrical parameters of the structure X - The
design lengths / /

calculated using calculated geometrical lengths /; and initial data relating to

g by.; and [, of all column structural members are
the design length factors. Variation of the geometrical lengths /, and
/ and /[,

should be performed based on the current values of the variable (unknown)

corresponded design lengths !/ on the further iterations

of.y.j> “ef.zj

parameters X . of the geometrical scheme.

Step 3. Calculation of the cross-section dimensions and geometrical
properties for all design cross-sections.

Geometrical properties of the design cross-sections (areas, moments of

inertia, elastic section moments, radiuses of inertia, etc.), as well as non-
dimensional slenderness for cross-section elements (webs and flanges)

Iw’j(i o) and ZN()? cs) should be calculated depending on the current
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values of the unknown (variable) cross-section dimensions X .

Step 4. Linear structural analysis of the considered steel structure.

For each m™ node of the finite element model subjected to k™
serviceability load case combination the displacements and rotations, as well
as the design horizontal o, (X) and vertical 0. 4 (X) displacements can be
calculated using the linear equations system of the finite element method (1.8).

For each i™ design section of ;™ structural member subjected to & ™
ultimate load case combination the design internal forces can be calculated
using the linear equations system of the finite element method (1.7).

Step 5. Calculation of the state variables (stresses, buckling factors,
allowable non-dimensional slenderness etc.).

The maximum value of the normal o, ., (X) and shear stresses

m

Tmax’ifk()?), as well as normal O},gfk()?)a shear 7 l;;k()?) and equivalent

O v ik (X) stresses at the specified cross-section point should be calculated

depending on the internal forces (axial force, bending moments and shear
forces) acting in i ™ design section of j ™ structural member subjected to & ™
ultimate load case combination as presented by the design code.

The flexural buckling factors ¢, (X, X5), ¢.,(X;.X), torsional-

flexural buckling factor (pL,’j()a( o> X ) for column structural members, as well

as the lateral-torsional buckling factor ¢,; (X4 Xg) for beam structural

members should be calculated depending on the corresponded design lengths,
cross-section type and cross-section geometrical properties for the structural

members according to the design code [4]. The stability factors ¢, (X) and

i (X) for beam-column structural members should be calculated depending on

the ration of the bending moment to the axial force, as well as depending on the
corresponded design lengths, cross-section type and cross-section geometrical
properties for the structural members according to the design code [4].

The maximum values for corresponded non-dimensional slenderness

Z M’j(f( ) and Z i (X) for column, beam and beam-column structural
members should be calculated depending on the internal forces (ration of the
bending moment to the axial force), as well as depending on the design lengths
ly, ;s L., cross-section type and cross-section geometrical properties for
the j "™ structural member [4].

Step 6. Verifications of the constraints and construction the set of active
constraints numbers A .

Verification of the constraints (1.9) — (1.17) should be performed for all
ultimate load case combinations and all design cross-sections of all structural
members. Verification of the constraints (1.20)—(1.21) should be also
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conducted for all serviceability load case combinations and all design
structural nodes. Additional requirements (1.22)—(1.23) in the form of
constraints on lower and upper values of the design variables, as well as local
buckling constraints (1.18) —(1.19) should also be verified. Set of active

constraints numbers A calculated for the current approximation X . should be
constructed according to (2.2).
Step 7. Calculation of the current objective function value f ()? )

objective function gradient Vf ()? .) and determination of the desired
decrement of the objective function value Af ()? o) -

The objective function gradient Vf ()?k) can be calculated by the
numerical differentiation with respect to the design variables using the finite
difference approximation. The desired decrement of the objective function

value Af ()? ) can be assigned as 5...25% from the current objective function

value f ()? )
Step 8. Construction of the constraint’s violations vector V and the matrix
of the active constraint’s gradients [Vgo]. The vector of the values of the

constraint’s violations V and the matrix of the constraint’s gradients [Vgo]
are constructed for active constraints only according to the set of active
constraints numbers A .

Step 9. Construction the matrix of active linear-independent constraint’s
gradients with triangular structure. The set of linear-independent constraint’s
numbers L and the matrix of active linear-independent constraint’s gradients
H[Vgo] with triangular structure are constructed according to the algorithm
presented by the paper [12].

Step 10. Step parameter & calculation. Step parameter & should be
calculated according to (2.10) or (2.11) and can be modified on the further
iterations depending on convergence of the iterative process (2.1).

Step 11. Calculation the column-vectors fz, and i which define the
design variables increment subject to the condition of elimination the
constraint’s violations and subject to the improvement of the objective
function value. The vectors fi, and f, can be calculated using (2.19) and

(2.20) respectively.
If some /™ component of the column-vectors i, and ji, satisfies (2.12),

the corresponded constraint gradient V¢, should be excluded from the matrix
[Vgo] , and corresponded violations ¥, should be excluded from the vector V ,

as well as the return to step 9 has to be conducted. In contrary case transition to
the step 11 should be performed.
Step 12. Calculation the increment vector for the current design variables
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and determination the improved approximation to the optimum solution. The
increment vector AX, for the current design variables values X, should be

calculated according to (2.20) or (2.21). The improved approximation X v tO

the optimum solution should be determined according to (2.1).

Step 13. Stop criteria verification of iterative searching for the optimum
solution. If all constraints (1.9) — (1.23) are satisfied with appropriate accuracy,
as well as inequality (2.22) or one of the stop criteria described by the paper
[12] is also satisfied, then transition to the step 13 should be performed. In
contrary case return to the step 1 should be conducted with £ <k +1.

Step 14. Discretization the optimum solution X , obtained in the
continuum space of the design variables.
Step 15. Optimum parameters of the structure is X . with optimum value of

the objective function f ()? )

Figure 3.1 presents the flow chart for structural optimization according to
the searching technique describing by the gradient projection method
considered above.

4. Results and discussion. In order to estimate an efficiency of the new
methods or algorithms, a comparison with alternative methods or algorithms
presented by other authors using different optimization techniques should be
performed. Criteria to implement such comparison are described, e.g. by Haug
and Arora [6] and Crowder et al. [3]. Many of these criteria, such as
robustness, amount of functions calculations, requirements to the computer
memory, numbers of iterations etc. cannot be used due to lack of corresponded
information in the technical literature. Therefore, an efficiency estimation of
the proposed methodology for solving parametric optimization problems
presented above will be based on the comparison of the optimization results
obtained using the proposed numerical algorithm, as well as of the results
presented by the literature and widely used for testing. The initial data and
mathematical models of the parametric optimization problems considered
below were assumed as the same as described in the literature.

4.1. Geometry and cross-sectional optimization of a 19-bar cantilever
truss. Figure 4.1 shows a 19-bar cantilever truss designed for the vertical loads
P =10 kN. Table 4.1 presents initial data for truss optimum design. There
were no lower and upper bounds for the cross section areas for all truss
members.
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Step 1. Describing an initial design (a set of design vanables) and initial data for
structural optimization. 4 is the iteration index, £ =0.

O—

Step 2. Calculation of the geometrical and design lengths for all members.

Y

Step 3. Calculation of the cross-section dimensions and geometrical properties for all
design cross-sections.

v

Step 4. Linear structural analysis

Step 5. Calculation of the state variables (internal forces, stresses, etc.)

Y

Step 6. Verifications of the constraints and
construction the set of active constraints numbers A

Y

Step 7. Calculation the current objective function value f ()? s

objective function gradient V# ()? .) and desired decrement

Y

Step 8. Construction of the constraint’s violations V and
the matrix of the active constraint’s gradients [Vgr)]

@—*\r

Step 9. Construction the matrix of active linear-independent constraint’s
gradients H[pr] with triangular structure and vector HV}’

Fig. 3.1. The flow chart for structural optimization
according to the searching technique based on the gradient projection method
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Step 10. Step parameter & calculation

Y

Step 11. Calculation the column-vectors f, and z, determining the design

variables increment subject to the condition of elimination the constraint’s
violations and subject to the improvement of the objective function value

Excluding the constraint gradient
Vg, from the matrix [Vg] and

violation ¥, from the vector V

A

Verification (2.12) for
all columns of the

matrix [Vg|

yes

Step 12. Calculation the increment vector AX; . for the
current design variables and determination the improved

approximation to the optimum solution ¥, il

Iteration index
k<«k+1

Step 13. Stop
criteria verificat.

Step 14. Discretization optimum solution x s

Y

Step 15. Optimum parameters of the structure is b's . with

optimum value of the objective function f (A-} o)

Fig. 3.1 (continuation). The flow chart for structural optimization
according to the searching technique based on the gradient projection method
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Fig. 4.1. Design scheme of the 19-bar cantilever truss
Table 4.1
Initial data for optimization of the truss
Unit weight of the truss material pg 10* kg/m®
Modulus of elasticity £ 2.10* kN/cm?
The allowable normal stresses o, in tension and 300 MPa

compression
The allowable displacement &, in the vertical direction for |50 mm
11" node

Truss weight minimization has been considered as the objective function.
The geometry and cross-sectional optimization problem has been formulated
as searching for optimum values of the vertical coordinates z, for all nodes of
the truss lower chord, as well as for optimum value of the cross sectional area
A for all truss members. Variable unknown cross-sectional area A for all
truss members as well as unknown vertical coordinates z, for all truss lower

chord nodes, X = (4, zl.)T, i=17,11, were considered as design variables. The
system of constraints included the normal stress constraints formulated for all
truss members depending on axial forces and allowable value of the normal
stresses o . The following displacement constraints have been also

formulated for all nodes of the truss lower chord:
e <0 ———1<0; Vi=7..11;
ZH 5 zZ""+H—¢

where H is the height of the truss panel, H =200 cm; & is a the small

positive number, & =107 . The considered optimization problem dimensions
were 6 design variables and 29 constraints.

Figure 4.2a presents the optimum values for vertical coordinates of the
truss lower chord. The optimum cross sectional area for all truss members is
4,, =4.0626 cm’. The optimum structural weight for the considered 19-bar
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cantilever truss is G,, =139.634kg. There were six active constraints in the
optimum point, namely normal stress constraints for the 5™, 6, 17, 18", 19"
truss members, as well as displacement constraint for the 11" truss node. The
considered geometry and cross-sectional optimization problem for 19-bar
cantilever truss has been solved by Czarnecki [1,2]. He obtained optimal
structural weight 187.945 kg.

The next geometry and cross-sectional optimization problem has been
formulated as searching for optimum values of the horizontal x, and vertical
coordinates z, for all nodes of the truss lower chord, as well as for optimum
value of the cross sectional area A for all truss members. Variable unknown
cross-sectional area A4 for all truss members, as well as unknown horizontal
x, and vertical z coordinates for all truss lower chord nodes,

X = (4, x,, zl.)T, i= m, were considered as design variables. The system of
constraints included the normal stress constraints formulated for all truss
members depending on axial forces and allowable value of the normal stresses
O ,.. - The following displacement constraints have been also formulated for all
nodes of the truss lower chord:

X, z

—1-— <0; — -1<0; Vi=7..10;
x" -L+eg " +L—¢
Z. Z.
—l-—0 <0; —— —-1<0; Vi=7..11;
=5 zZ""+H—¢

where L is the length of the truss panel, L =200cm. The considered
optimization problem dimensions were 10 design variables and 37 constraints.
Figure 4.2b presents the optimum design values for vertical and horizontal
coordinates of the truss lower chord. The optimum cross sectional area for all
truss members is 4,, =4.0626 cm’. The optimum structural weight for the

considered 19-bar cantilever truss is G,, =131.11 kg. There were eight active

constraints in the optimum point, namely the normal stresses constraints
formulated for the 2", 3™ 4™ 5% 7% 16" and 19" truss members, as well as
displacement constraint formulated for 11™ node. The considered geometry
and cross-sectional optimization problems for 19-bar cantilever truss has been
solved by Czarnecki [1, 2]. He obtained optimal structural weight 178.842 kg.

The comparison of the optimization results presented by the paper confirms
the validity of the optimum solutions obtained using the proposed optimization
methodology. For those design cases when the purpose function and
constraints of the mathematical model are continuously differentiable
functions, as well as the search space is smooth, a gradient projection method
provides better optimum results comparing to the genetic algorithms.
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Fig. 4.2. Optimum coordinates values for all nodes of the 19-bar cantilever truss lower chord:
(a) — when vertical coordinates are considered as design variable only;
(b) — when both vertical and horizontal coordinates are considered as design variable

4.2. Cross-sectional optimization of a 41-bar roof truss. Figure 4.3
shows a 41-bar roof truss designed for the vertical loads P =4 ton = 39.24 kN
applied to the upper truss chord and 1.5P =6 ton = 58.86 kN applied to the
lower truss chord. A parametric optimization problem for the roof truss by the
criterion of the material volume minimization has been solved by I-Cheng [8]
using a genetic algorithm. He obtained the optimum volume 0.121689 m® for
the considered roof truss.

Initial data (see Table 4.2) and mathematical model of the 41-bar truss
optimization problem are assumed as the same as described in the paper [8].
Cross-sectional areas for 21 stiffness types of the roof truss structural members

are considered as the design variables, X =(Al.)T,i=1,ﬁ (see Figure 4.3).

Cross-sectional areas of the truss members assumed to be varying discretely
starting from 2 cm” until and including 64 cm” with step 2 cm”. The system of
constraints includes normal stresses verifications for all truss members, as well
as vertical displacement constraint for truss node «. Optimization problem

dimensions are 21 design variables, 80 constraints.
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Fig. 4.3. Design scheme of the 41-bar roof truss with stiffness types numbers

Table 4.2
Initial data for optimization of the truss

Modulus of elasticity £ 2.06-10° MPa
The allowable normal stresses o, in tension and 1250 kg/em” =

2
compression 12.2625kN/cm
The allowable value for the vertical displacement of the |6 mm
roof truss node a

The parametric optimization problem for optimum cross-section areas of
the 41-bar roof truss has been solved in the continuum space of the design
variables using the improved gradient projection method described above.
Table 4.3 presents the optimization result for the considered 41-bar roof truss.

The optimum volume for the optimum truss solution is ¥, =0.109 m’. The

optimum solution has been validated by the convergence of the optimization
algorithm in the same point subjected to the different start approximations to
the design variables. The optimum solution for the roof truss obtained in the
continuum space of the design variables has been further discretized. The
optimum volume for the optimum truss solution in discrete space of the design

variables is V7 =0.119 m’ (see Table 4.3).

The comparison of the optimization results presented by the paper confirms the
validity of the optimum solutions obtained using the proposed optimization
methodology. Start values of the design variables have no influence on the
optimum solution of the considered non-linear optimization problem confirming in
such way accuracy and validity of the optimum solutions obtained using the
proposed numerical algorithm developed based on the presented gradient
projection method. For those design cases when the purpose function and
constraints of the mathematical model are continuously differentiable functions, as
well as the search space is smooth, a gradient projection method provides better
optimum results comparing to the genetic algorithms.
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Table 4.3
Optimization results for the 41-bar roof truss

Stiffness types Optimum 2Values fo? cross-section areas of.the truss members|
numbers . [cm ].dependmg on space of thf: d§51gn variables
1n continuum space in discrete space
1 17.8208 18
2 15.6555 16
3 36.3758 38
4 48.2494 50
5 54.5526 56
6 40.5101 42
7 2.0000 2
8 2.0000 2
9 2.0000 2
10 26.3752 28
11 14.3494 16
12 40.1982 42
13 52.7656 54
14 56.8969 58
15 17.8746 18
16 13.0426 14
17 12.9413 14
18 5.4713 6
19 6.4781 8
20 2.9064 4
21 2.0000 2
Truss volume, cm’ 0.108997 0.118635

Conslusion. A new mathematical model for parametric optimization
problems of steel structures has been proposed by the paper. The design
variable vector includes geometrical parameters of the structure (node
coordinates), cross-sectional dimensions of the structural members, as well as
initial pre-stressing forces introduced into the specified redundant members of
the structure has been formulated by the paper. The system of constraints
covers load-carrying capacities constraints for all design sections of structural
members subjected to all ultimate load case combinations, as well as
displacements constraints for the specified nodes of the structure subjected to
all serviceability load case combinations.

The method of the objective function gradient projection onto the active
constraints surface with simultaneous correction of the constraints violations
has been used to solve the formulated parametric optimization problem for
steel structures.

A numerical algorithm for solving the formulated parametric optimization
problems of steel structures based on the gradient projection method has been
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developed.

In order to estimate an efficiency of the proposed numerical algorithm, a
comparison of the obtained optimization results with the results presented by
the literature and widely used for testing has been performed. Good correlation
of obtained results with the results of the other authors confirms the validity of
the optimum solutions calculated using the proposed numerical algorithm.

It has been shown, that for those design cases when the purpose function
and constraints of the mathematical model are continuously differentiable
functions, as well as the search space is smooth, a gradient projection method
provides better optimum results comparing to the genetic algorithms.
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FOpuenko B. B., Ilenewrxo 1. /1.
MAPAMETPUYHA ONITAMIZALISA METAJIEBUX CTEP)KHEBUX KOHCTPYKIIIA
HA OCHOBI METO/IY ITPOEKIIIi TPAJTIEHTA

MeTol0 JOCHIKEHHS € po3pobKa YHCENbHOI METONMKH Ui DO3B’A3Ky 3ajadi
HapaMeTpUYHOI ONTUMI3allii CTaJIeBUX CTEPXKHEBUX KOHCTPYKIIH IpH OpieHTawil Ha 1i mporpamMHy
peaizaiil0 y CHCTEMi aBTOMAaTH30BAHOTO IPOCKTYBaHHsA. Y CTATTI 3alpollOHOBaHa HOBa
MaTeMaTH4Ha MOJEINb JUIS PO3B’3KYy 3aadi MapaMeTpHYHOl ONTUMI3aLil METaJeBHX CTEP)KHEBUX
KOHCTPYKILiil. BeKkTop 3MIHHHX NPOCKTYBaHHS OXOIUIIOE IIapaMETPU TIE€OMETPUYHOI CXEMH
KOHCTPYKIii (KOOpAWHATH BY3JIiB), PO3MIpH IOINEPEUYHUX I[Epepi3iB HECY4yHX EJIIEMCHTIB
KOHCTPYKIIii, @ TAKOXX 3yCHJUISA MONEPEAHbOr0 HANpPYKEHHS, LI0 BBOIATHCS Yy BHU3HAUYCHI 3aiiBi
B’s131  KOHCTPYKUil. VY cucreMy OOMEKEHb 3alydeHi OOMEXKEHHs Hecydoi 3[aTHOCTI,
copMysbOBaHi s YCiX PO3paXyHKOBHX IEPEPI3iB HECYYHX €IEMEHTIB METaJeBOi CTEP)KHEBOT
KOHCTPYKILIi, 0 mijysirae Iil po3paxyHKOBHX KOMOIHAIii HaBaHTaXEHb IEPIIOr0 IPaHUYHOrO
CTaHy, a TAKOX OOMEXEHHs IepeMillieHb, cHOPMYIbOBaHI Il BU3HAYCHUX BY3JIB CTEPKHEBOL
CHCTEMH, 10 MiyIArae jii po3paxyHKOBHX KOMOIHALi HABAHTaXXEHb JPYyroro rpaHMYHOro CTaHy.
Jliist po3B’sI3Ky IOCTABIICHOI 3a/a4i mapaMeTpHYHOl ONTHMI3auii BUKOPUCTAHUH METOJ MPOCKLil
rpajieHTa GyHKIii METH HA MTOBEPXHIO aKTHBHUX OOMEKEHb 3 OJHOYACHOIO JIIKBigaLli€l0 HEeB SI30K
B IOPYLICHHX OOMEKEHHSAX. Y CTAaTTI TAaKOX 3alpOINOHOBAHMN YHCENbHHH aIrOPHTM UL
PO3B’S3Ky MOCTaBJICHOI 3a/adi MmapaMeTpUYHOl ONTHUMI3alil CTaJeBMX KOHCTPYKIii. Pe3ynbratn
ONTUMI3aLifHUX pO3PaxyHKIB CTAIBHUX (epM, SKI MPEACTABICHI Yy CTaTTi, MiATBEPIHIH
JIOCTOBIPHICTh ONTHMAJBHHUX DIIICHb, OTPUMAHUX 3 BUKOPHCTAHHSIM 3allPOIIOHOBAHOI YHCENBHOL
MCTOJUKH.

Kiarou4oBi ciioBa: napamerpuyHa ONTHMI3allisl, CTaJIEBI CTEPXKHEBI KOHCTPYKIIil, HeliHiiHe
IpPOrpaMyBaHHs, OOMEXEHHS CTIMKOCTI, 3YCHJUIL IONEPEIHbOr0 HANpPYXKEHHs, KOOPAHHATH
BY3JIiB, IPpajliEHTHUH METO/I, METOJ] CKIHUEHHX EJICMEHTIB, UM CEIIbHUI aJIrOPUTM.

Yurchenko V. V., Peleshko I. D.
PARAMETRIC OPTIMIZATION OF STEEL STRUCTURES BASED ON GRADIENT
PROJECTION METHOD

The main research goal is the development of a numerical methodology for solving
parametric optimization problems of steel structures with orientation on software implementation
in a computer-aided design system. The paper has proposed a new mathematical model for
parametric optimization problems of steel structures. The design variable vector includes
geometrical parameters of the structure (node coordinates), cross-sectional dimensions of the
structural members, as well as initial pre-stressing forces introduced into the specified redundant
members of the structure. The system of constraints covers load-carrying capacities constraints
formulated for all design sections of structural members of the steel structure subjected to all
ultimate load case combinations. The displacements constraints formulated for the specified nodes
of the steel structure subjected to all serviceability load case combinations have been also included
into the system of constraints. The method of the objective function gradient projection onto the
active constraints surface with simultaneous correction of the constraints violations has been used
for solving the parametric optimization problem. A numerical algorithm for solving the formulated
parametric optimization problems of steel structures has been developed in the paper. The
comparison of the optimization results of truss structures presented by the paper confirms the
validity of the optimum solutions obtained using the proposed numerical methodology.

Keywords: parametric optimization, steel structures, nonlinear programming, buckling
constraints, pre-stressing forces, node coordinates, gradient projection method, finite element
analysis, numerical algorithm.

FOpuenko B. B., Ilenewxo U. /1.
MMAPAMETPUYECKAS OIITUMU3ALUA METAJIVIMYECKUX CTEP)KHEBBIX
KOHCTPYKIUI1 HA OCHOBE METO/IA ITPOEKI[AY F'PAITMEHTA

Lenbto uccnenoBaHus sBisETCs pa3pabOTKa YMCIEHHOW METOAMKHM JUIS pELICHHs 3anadq
HapaMeTPUUECKOH ONTHMHU3ALUK CTAJIbHBIX KOHCTPYKLMI NPU OPHUEHTALMH Ha €€ IPOrpaMMHYI0
peayM3aluio B CHCTEME aBTOMAaTH3MPOBAHHOIO NPOEKTHPOBaHUs. B crarhe mpejioxkeHa HoBas
MaTteMaTH4ecKas MOJENb JUIi pPELIeHHMs 3ajay I[apaMeTPUYecKOW ONTHMH3ALUM CTAJIbHBIX
KOHCTPYKLMH. BeKTop nmepeMeHHbIX NPOEKTHPOBAHUS OXBATHIBAET MapaMETPbl I€OMETPUUECKOM
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CXeMbI KOHCTPYKIMU (KOOPAMHATHI Y3JI0B), Pa3Mephbl IMONEPEUHbIX CEYEHUH HECYIMX 3JIEMEHTOB
KOHCTPYKLIMH, a TAKXKE YCHIIMS NPEIBAPUTEIBHOIO HATSHXKEHUS, BBOAUMBIC B YKa3aHHBIE JIMIIHHUE
CBSI3U KOHCTPYKLMH. B cucTeMy orpaHM4YeHHH BKJIIOYEHBI OIPaHUYEHHs HECylleld CHOCOOHOCTH,
copMyIMpOBaHHbIE IS BCEX PACUCTHBIX CEUCHHH HECYIIHMX JJIEMEHTOB CTAJbHON CTEpPIKHEBOH
KOHCTPYKLIMH, IOABEPKEHHOH JEHCTBUIO pAacUYETHbIX KOMOMHALMH  HArpy3oK IeEpBOro
IPEAEeIbHOr0 COCTOsIHUsL. OrpaHHYeHus TepeMelleHnH, chOopMyIHPOBaHHbIC IS ONPEEICHHBIX
Y3JI0B CTEPXKHEBOH CHUCTEMBbI, IOABEPKEHHOH IEHCTBUIO pacYeTHbIX KOMOWHALMH Harpy3ox
BTOPOI'0 MNPEJEIbHOr0 COCTOSHHSA, TAaKKEe BKJIOYEHBI B CUCTEMY OrpaHMueHHid. J{ns pemeHus
MOCTaBJICHHON 3aJlayy MapaMeTPUYECKOW ONTUMM3ALMK ObLI MCIOJIb30BaH METOJ IPOECKLUH
rpagieHta (GYHKIMM LEId Ha IIOBEPXHOCTh AKTHBHBIX OFPAaHHYCHHH C OXHOBPEMEHHOM
JIMKBUJALMEN HEBSI30K B OrPaHUUYCHUSX. B cTaThe TakxkKe MPEJIONKEH YUCICHHBIH aJrOPUTM IS
pelIeHHs] TIOCTaBJICHHOM 3a/aud IapaMeTPUUYECKOW ONTHMMHU3ALUU CTAJbHBIX KOHCTPYKIMMH.
Pe3ynbTaThl ONTUMHU3ALMOHHBIX PACYETOB CTAJbHBIX (epM, MpPEICTaBICHHBIE B CTaThbe,
HOATBEPIMIIM  JIOCTOBEPHOCTb ONTUMAJIbHBIX PEIICHUH, I0JydaeMbIX C MCIOJIb30BAaHHEM
HPEIIOKESHHOW YUCIICHHON METOIMKH.

KiroueBble cjioBa: napaMerpudeckas ONTUMM3ALMS, CTAJIbHbIE CTEPKHEBBIE KOHCTPYKLMH,
HEJIMHEHHOe NPOrpaMMHPOBAHUE, OrPAHUYEHUS YCTOMYMBOCTH, YCHJIUS IPEIBAPUTEIHLHOIO
HATSDKEHUsI, KOOPJIMHATBI Y3JI0B, TPAJANEHTHBIH METO, METOJl KOHEYHBIX 3JIEMEHTOB, YHUCICHHbIH
AITOPUTM.

YK 624.04, 519.853

FOpuenko B. B., Ilenewrxo I. /{. TlapameTpuuHa onTUMi3amiss MeTaJleBUX CTEPKHEBHX
KOHCTPYKIIiii Ha 0CHOBI MeTOy mpoekuii rpagienTa // Omip MaTepiaiiB i Teopis Copy/: HayK.-
tex. 30ipH. — K.: KHYBA, 2020. — Bumn. 105. — C. 192-220.

Y cmammi  3anpononosana nosa mamemamuuyna Mmolenv 0N PO36 A3KY 304yl
napamempuyHoi onmumizayii - Memaneeux CmepicHesux KOHCMpPYKyiu. Bexmop  3minnux
NPOEKmMy6antsi OXONMOE NAPAMempU 2eOMEeMPUYHOT cxeMu KOHCMPYKYii (Koopounamu 6y37is),
PO3MIpU NONEpeyHUX nepepizie HeCyuux eremMenmie KOHCMpPYKYii, a makoic 3yCuiis HOnepeoHb020
HAnpyIcenHs, wo 6800SMbCS V GU3HAYEHI 3auei 6’3 Koncmpykyii. YV cucmemy obmedicens
3anyHeHi 0OMENCeHHs. Hecyuoi 30amHOCMI, CHOPMYIbO6aHi OIS YCIX PO3PAXYHKOBUX Nepepizié
Hecyuux eneMenmie Memanegoi cmepoicHesoi KOHCMpPYKYil, wo nionseac Oii po3paxyHKOGUX
KOMOTHAYIU HABAHMAdICEHb NEPUIO20 SPAHUYHO20 CMAHY, A MAKONC 00MedCeHHs nepemiuyens,
ChOpMYILOBAHI 0Nl BUZHAUEHUX BY3/IE CIMEPICHEBOT cucmemu, wo nioaseae Oii po3pPaxyHKOGUX
KOMOIHayitl Haganmasicenb Opy2020 2paHu¥yHo20 cmawy. i pos3e a3y nocmaenenoi 3a0adi
napamempuuHoi OnMUMI3ayii SUKOPUCMAHULL MemoO NpoeKyii epadichma @yHKyii memu Ha
NOGEPXHIO AKMUBHUX 0OMEICeHb 3 00HOUACHOIO TIKEIOAYICIO He8 30K 8 NOPYULEHUX 0OMEICEHHSIX.
Y cmammi makooic 3anpononosanuii uucenrbHuli areopumm 015 po3e 3Ky nocmaenenoi 3adaui
napamempuyHoi onmumizayii cmanesux KOHCMpYKyii.

In. 6. Tab6x. 3. bi6mior. 17 Ha3s.
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Yurchenko V. V., Peleshko I. D. Parametric optimization of steel structures based on gradient
projection method // Strength of Materials and Theory of Structures: Scientific-and-technical
collected articles — Kyiv: KNUBA, 2020. — Issue 105. — P. 192-220.

The paper has proposed a new mathematical model for parametric optimization problems of
steel structures. The design variable vector includes geometrical parameters of the structure (node
coordinates), cross-sectional dimensions of the structural members, as well as initial pre-stressing
forces introduced into the specified redundant members of the structure. The system of constraints
covers load-carrying capacities constraints formulated for all design sections of structural
members of the steel structure subjected to all ultimate load case combinations. The displacements
constraints formulated for the specified nodes of the steel structure subjected to all serviceability
load case combinations have been also included into the system of constraints. The method of the
objective function gradient projection onto the active constraints surface with simultaneous
correction of the constraints violations has been used for solving the parametric optimization
problem. A numerical algorithm for solving the formulated parametric optimization problems of
steel structures has been developed in the paper.

Figs. 6. Tabs. 3. Refs. 17.
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FOpuenko B. B.,  Ilerewko Y. /[,  Tlapamerpuyeckasi  ONTHMH3AaNHUs  MeTAJJIMYECKHX
CTEePKHEBBIX KOHCTPYKIHUI HAa OCHOBE MeToJAa mpoekuun rpagueHTta // ConpoTuBieHHE
MaTepHaloB H TEOPUsl COOpYXeHHuil: Hayd.- Tex. coopH. — K.: KHYCA, 2020. — Bem. 105. —
C. 192-220.

B cmamve npeonooicena Hoeasi MamemMamuyeckas Mooeib O peweHus  3a0ay
napamempuyeckoi  ONMUMU3AYUU — CIMAIbHLIX — KOHCMpYKyuu. — Bexmop — nepemenmvix
NPOEKMUpoBanusl  OXGAMbIGAEN — NAPAMEMPbl  2COMEMPUUECKOU  CXeMbl  KOHCMPYKYUU
(KoopOunamul y37108), pasmepbl NONEPEUHBIX CEYEHUl HEeCywjux DdIEeMEHMO8 KOHCMPYKYull, d
maxice  YCunus NnpeosapumenvbHo20 HAMsIICeHUs, 6600UMble 6 VKA3AHHble JUUHUE C6A3U
KOHCmpyKkyuu. B cucmemy oepanuvenuii 6KmOYeHbl O2panHuYeHUs: Hecywel CcnocooHoCmu,
cpopmynuposanmvle O CEX PACHEMHBIX CeHeHUll HeCYuux dIeMeHNO8 CMAIbHOU CMEPICHEEOU
KOHCMPYKYUU,  NOOBEPICEHHOU  OCUCMBUI0  PACHEMHbIX  KOMOUHAWUU  HAZPY3OK — NepBozo
npeodenbHo2o  COCMOsHUSA, a MAKJICEe O02PAHUYEHUsl nepemewenuti, chopmyauposannvie Ois
ONpeOeneHtbIX Y3106  CMEPICHEGOU  CUCIEMbl,  NOOGEPICEHHOU  OeUCmEUI0  PACHenHbIX
KOMOUHAYULl HASPY30K GMOPO20 NpedebHo20 cocmosanus. [l peulenus nocmasieHHol 3a0ayu
napamempuyeckol ONMUMU3AYUU UCNOTb306AH MEMOO NPOeKyuu 2paoueHma @ynkyuu yeau Ha
NOBEPXHOCHb AKMUBHBIX 02PAHUYEHUL ¢ 0OHOBPEMEHHOU JUKBUOAYUEl HEeBA30K 8 02PAHUYeHUsAX. B
cmamve  NpPeonodCcer  HUCACHHbI — Al2Opumm Ol peulenus — NOCMAGIeHHOU  3a0ayu
napamempuyecKoi OnmuMu3ayul CMaabHbIX KOHCIMPYKYUIL.

Wn. 6. Tabxa. 3. bubauor. 17 Ha3s.
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