Size optimization of single edge folds for cold-formed structural members
DOI:
https://doi.org/10.32347/2410-2547.2020.105.73-86Keywords:
load-bearing capacity, cold-formed profile, optimization problem, single edge fold, stiffener, distortional buckling, linear convolution of criteriaAbstract
Parametric optimization problem for single edge fold size in cold-formed structural members subjected to central compression has been considered by the paper. Determination the load-bearing capacity of the cold-formed structural members has been performed using the geometrical properties calculated based on the constructed “effective” (reduced) cross-sections taking into account local buckling effects in the section as well as distortional buckling effects.
Single edge fold size in cold-formed C-profile has been considered as design variable. Linear convolution of criteria, namely minimization criterion of design area of stiffener cross-section and maximization criterion effective area of stiffener cross-section which defines it reduced load-bearing capacity due to flexural buckling has been used as optimization criterion. The parametric optimization problem has been solved using the method of objective function gradient projection onto the active constraints surface with simultaneous correction of the constraints violations. In order to realize the formulated optimization problem, software OptCAD intended to solve parametric optimization problems for steel structural systems has been used.
Optimization results of the single edge folds for the cold-formed С-profiles manufactured by «Blachy Pruszyński» company, «BF FACTORY» company as well as «STEELCO» company have been presented by the paper. The results of the performed investigation can be used as recommendations for companies-manufacturers of the cold-formed profiles, as well as a guide for creation the national assortment base of the effective cold-formed profiles promoting wider implementation of cold-formed steel structures in building practice.
References
DSTU-N B EN 1993-1-3:2012 EuroCode 3. Design of steel structures. Part 1-3: General rules – Supplementary rules for cold-formed members and sheeting (EN 1993-1-3:2006, IDT). – Kyiv, Minregionbud of Ukraine, 2012. (ukr)
DSTU-N B EN 1993-1-5:2012 EuroCode 3: Design of steel structures. Part 1-5: General rules – Plated structural elements (EN 1993-1-5:2005, IDT). – Kyiv, Minregionbud of Ukraine, 2012. (ukr)
Guljaev V. I., Bazhenov V. A., Koshkin V. L. Metodyi optimizatsii v stroitelnoy mehanike (Optimisation methods in structural mechanic). – Kyiv, 1988. – 192 p. (rus)
Peleshko I., Yurchenko V. An optimum structural computer-aided design using update gradient method // Proceedings of the 8th International Conference “Modern Building Materials, Structures and Techniques” (Lithuania, Vilnius, May 19-21, 2004), Faculty of Civil Engineering, Vilnius Gediminas Technical University. – p. 860-865.
Peleshko I. D., Yurchenko V. V., Beliaev N. A. Computer-aided design and optimization of steel structural systems // Zeszyty naukowe Politechniki Rzeszowskiej “Budownictwo i inżynieria środowiska”. – No. 52(264). – 2009. – p. 145-154.
Perelmuter А. V., Yurchenko V. V. Doslidzhennia oblasti nesuchoi zdatnosti tonkostinnykh sterzhnevykh elementiv iz kholodnohnutykh profiliv (Load-bearing capacity region analysis of thin-walled structural members from cold-formed profiles) // Science and construction. – № 3 (21), 2019. – p. 42 – 48. https://doi.org/10.33644/scienceandconstruction.v21i3.110 (ukr)
Permyakov V. O., Yurchenko V. V., Peleshko I. D. An optimum structural computer-aided design using hybrid genetic algorithm // Proceeding of the International Conference “Progress in Steel, Composite and Aluminium Structures” / Gizejowski, Kozlowski, Sleczka & Ziolko (eds.) / Taylor & Francis Group, London, 2006. – p. 819-826.
Assortment ranges of the cold-formed profiles for light gauge steel structures of the Ukrainian manufacturers. UCSC-014-16, 2016. 32 p. (ukr)
Yurchenko V. Searching for shear forces flows in arbitrary cross-sections of thin-walled bars: numerical algorithm and software implementation // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles. – Kyiv: KNUBA, 2019. – Issue 103. – p. 82 – 111. https://doi.org/10.32347/2410-2547.2019.103.82-111.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.