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On the basis of modern numerical implementations of the finite element method the article
presents the theoretical foundations of the analysis of deformation processes of machines and
structures in their contact interaction with the elastic-plastic nonlinear soil medium within the
three-dimensional spatial problem taking into account the previous stress state and load history.
The methodology of construction of computational models of joint deformation and mutual
influence of rigid structures and essentially plastic external medium is developed, new special
heterogeneous finite elements of SAFEM of general form with variable geometrical and physical-
mechanical parameters and arbitrary boundary conditions for approximation of arrays of hardly
connected reinforced soils are developed.
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Introduction. Development of new and improvement of existing
production technologies, application of new materials, effective constructive
schemes is explained by constant complication of operating conditions. Acute
shortage of territories, especially in large cities with dense buildings and limited
land space, solving the transport collapse problem due to underground
transport, laying pipelines and construction of ground and underground tanks
for storage of fuel, water, chemical and food industries components,
underground protective structures for military purposes - a small list of
challenges that practicing engineers and scientists face today and encourage the
continuous improvement of tools for comprehensive analysis of the model
behavior that describe the interaction of structures with the environment.

The use of numerical methods in the calculation of machines and structures,
taking into account their interaction with the elastic-plastic medium is largely
determined by the complexity or even impossibility of analytical calculation
due to the complexity of structural schemes, heterogeneity of material features,
uneven soil layers, implementation of step-by-step work execution technologies
and so on. The development of computer technologies has opened wide
opportunities and encouraged researchers to use more complex models, the
construction of which is accompanied by various issues: the choice of boundary
conditions, load schemes, soil base models, taking into account the history of
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the structure final state. Therefore, the development on the basis of modern
numerical implementations of the finite element method of new effective
methods of computational mechanics for the analysis of nonlinear processes of
deformation of structures and buildings in their contact with the elastic-plastic
medium is certainly an actual problem of structural mechanics.

Compatible calculations of structures and nonlinear basis, which are
described by modern mechanical and soil models in one problem is a significant
technical problem. And neither the existing “problem-oriented” software
packages, nor the “universal” ones - do not fully contain such models. In
designing practice, the simplest Mohr-Coulomb Soil Model is often used for
engineering calculations. The model is a logical continuation of the linear-
elastic model and is based on the Hooke’s Law and the Coulomb’s strength
condition. Despite the model defects (ignoring the nonlinear dependences
between deformations and stresses, constant modulus of deformation), it has a
number of significant advantages (traditional parameters, the definition of
which is clearly regulated by the norms) and continues to interest domestic and
foreign scientists, researches on its improvement continue [31, 1]. The
achievements of modern soil mechanics are a large number of mathematical soil
models: Hardening Soil Model and its derivatives (Hardening Soil Small-
strain), Soft Soil and its derivatives, Cam-Clay etc. Noteworthy are the works
that compare different models [11, 4], outline the possible limits of their use
[12] and describe the application experience [21]. The Hardening Soil model is
attracting more and more attention, which takes into account the soil hardening
upon increasing stress levels. The biggest problems when using the model arise
due to the large number of parameters, the definition of which is not regulated
by the norms. Early publications contained a number of inaccuracies and errors,
although they made an invaluable contribution to the model expansion, and
recent publications have clarified a number of problematic issues [12]. Research
on improving the model continues [20, §8].

The tasks solution is possible only within the framework of numerical
methods, the most common of which is the finite element method (FEM) [24].
The construction of the calculated finite element model raises many complex
questions that require additional detailed study. In addition, the compliance with
the state building norms and regulations is an important factor for further
practical use.

The combination of the latest achievements in the field of structural
mechanics and soil mechanics is a promising direction for the development of
effective approaches for building discrete models of spatial systems “structure-
nonlinear base” for solving applied problems.

1. Problem statement. Let’s consider in some arbitrary coordinate system

z" spatial rotation bodies or prismatic bodies formed by the motion of some
generating surface along a closed or open arbitrary guide without breaks and

which are under the action of nonstationary load, in the time interval T € [to,t] ] .
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The coordinate system Z" will be further called basic and used to describe
the geometric and mechanical characteristics, initial and ultimate kinematic
conditions, external loads. To represent the stress-strain state of the body, we
introduce the local curvilinear coordinate system x', which is related to the
body geometry. The coordinate lines x' and x* are placed in the generating
surface area, and x° is oriented along the guide.

It is considered that at any point of the body there is a clear relationship
between the basic and local coordinate systems, which is determined by the
forward and inverse tensors of the coordinate transformation:

, 7 y
o =9 =0 (1)
S D Y Al

Hereinafter, the indices denoted by Latin letters take the values 1, 2, 3, and
by Greek - 1, 2, comma before the index shows the operation of differentiation.

The covariant components of the metric tensor of the local coordinate system
can be represented through the covariant components of the basic system:

gl] = Z,’? Z,r} gm'n' . (2)
The contravariant components are located under known covariants:
P Algy) , 3)
g

where A(g;)is the algebraic addition to the element g,, g = det[ gi/} is the
matrix determinant.

Geometric Cauchy relationships in curvilinear coordinate systems. In the
general case, the strain tensor components in the local coordinate system are
determined by the ratio:

&; :%(ui’j+uj’i)—uk1"g., 4)

ou; . . .
where u; ; :a—’j, Ff; are the Christoffel symbols of the second kind, u, is
: -
the movement in the local coordinate system.

For convenience, let’s present the movements and the Christoffel symbols
by their values in the basic coordinate system:

u, = Z'Zum , 5)
rk=xkz"| 2"1” +—Z’rj (6)
[/ X2 Jom'n’ aZm, ’
where z’sklx’k,, = 55: ).
After substitution (5) — (7) in (4) we obtain the formula for representing the

strain tensor components in the local coordinate system through the
movements components in the basic [6]:
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1 I% 1% %
& :E(Mk',iz,j tuy Z; )—uk,z’l- erm'n' . 8)
Geometric Cauchy relationships in the Cartesian and the orthogonal
cylindrical coordinate systems. The description of prismatic bodies and
rotation bodies with variable geometrical and physical-mechanical parameters
is most naturally carried out in the orthogonal cylindrical:

7V 3 1
grr =8y =1, &y = (Z ) s Tyy == 1"3 oy =y z? )
and the Cartesian coordinate systems:
grr =8yy =8yy =1, '—0 (10)

In this case, the metric tensor components in the local coordinate system
are presented through the components in the basic by the formula:

v
8;=12,2; +Z Z +Z ng33,. (11)
The relationship between movements and deformations (8) can be written as:
_ ] k/ k/ 3/ 3/ 2/ 2/ 3/ 3/ 3/ 2/ 3/
& = i(uk',iz,j Tl 2 ) —uy 2y 255y —uy 25 2Ty —uy 2 25Ty - (12)

Geometric Cauchy relationships for rotation bodies and rectilinear prismatic
bodies. An important partial case of independent practical significance are
objects with a canonical guide, for which the geometric equations (12) are
greatly simplified. These are primarily heterogeneous circular rotation bodies
and prismatic rectilinear bodies with a variable cross-sectional area.

Due to the convergence x° and Z°, and their orthogonality to the cross-
sectional area in the cylindrical coordinate system (0 < x’ <27):

=25 =0, z3 =1 (13)
in the Cartesian (0 < x* <2):
2’30’( = 2’03(’ = O’ 2733/ =a, (14)

where g is a half the body length.
Taking into account (13) and (14), the correlations (12) take the form in the
orthogonal cylindrical coordinate system:

€ :l(zy'u, +2%u., )
of H\ e VBT A re)

1 v 22,2(1“3'
80{3 = E +Z u}, 3 ZZ, s

£33 =Uyz+ Zziuzv (15)
in the Cartesian:

€ :l(zy'u, +2%u., )
of 5\ % VBT A e)

1 ,
- v
€3 = 2 (au3',a + Z,a”y',?s) ’
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&3 =auy ;. (16)
The stress tensor components in the local coordinate system are expressed
through the strain tensor components based on the generalized Hooke’s Law [6]:
o’ =aMeg,. (17)
In isotropic body, the elastic constant tensor components d”* are related

to the Lame coefficients A and u ratios [23]:

d™M = 2g7g" + (g g™ +g"g ™), (18)
Ev = E
(1-2v)(1+v)° 2(1+v)’
of the elastic modulus and the Poisson’s ratio at the body point under
consideration.

Within the framework of the accepted dilatancy model for the soil in the
boundary state, the deformation increment consists of two parts:

de=de +de’. (19)
The upper indexes e and p in the values notation indicate their elastic and

where A= E= E(Z"'), v=v(Z"') is the value

plastic nature, respectively. The stress increment do is associated with the
elastic deformation increment by the ratio:

do=C-de°, 20)
where C is the elastic constant tensor, the components of which are
determined by the formula:

= L[Lqﬁq"’ +0.5(¢"q" +4"¢" )} : @1
I+v[l-v
The parameters E and v denote, respectively, the medium elasticity
modulus and the Poisson’s ratio, and ¢’ are the metric tensor components.
The plastic deformation increment de” is determined based on the

unassociated law of plastic flow:
F
der = ar 2L , (22)
teled
where F is the plastic potential function, dA is the small scalar factor that
determines the absolute value de” .
With it:
F+f, (23)
where f is the function that determines the plasticity condition ( f =0).

The modified Mises-Schleicher-Botkin condition is used as the boundary
state criterion:
f=T+o,tgy—1, .if O, < Dys (24)
f=T+ptgy—-7, if o0,>p,,

o, isthe average (hydrostatic) pressure:
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L
=37, (25)

T is the intensity of tangent stresses (the second invariant of the stress

T— _S']S ; =0, ——0 q 26

TS
gy
resistance to uniform tension, p, is the soil medium parameter. The condition

v - the friction angle on the octahedral site, Hj = is the ultimate

(24) in the space of principal stresses corresponds to the combined boundary
surface, which is a combination of a cone and a cylinder (Fig. 1).

The need to accept the
condition (24) is due to the fact
that with a large all-round
compression, soils behave like
solid bodies, in which it is not
possible to achieve loosening
even with significant shearings,
i.e. there is no dilatancy, and in
addition, the ultimate shear
load is no longer dependent on
the compression level. This
corresponds to the acceptance
of the conditions for the
medium plastic incompressibility and the independence of the limiting shear
load from the uniform pressure level — the cylindrical part of the modified
condition (24). The value of the parameter p, of the conical part transition

O,

Fig. 1. Loading surface.
General view in space of principal stresses

(24) to the cylindrical one was taken equal to p, =-2,0 MPa in accordance
with the experimental data of Sidorov and Sipidin [26].

The modified criterion (24) has another distinctive feature. The Mises-
Schleicher-Botkin condition in it is consistent with the Coulomb-Mohr
condition in such a way that for all kinds of stress states the discrepancy (in the
limiting value T) is minimal. In addition, the expressions 7, and tgy were
obtained as functions of the norming parameters ¢ (adhesion) and ¢ (angle of

internal friction).
. 6+/3Ccos gy = 6/3sing
9—sin’@ 9—sin’¢p
The procedure for obtaining (27) is described in detail in the work [7].
It can be shown that upon the direct differentiation of the plastic potential

27)

function, the expression

dFU, is similar to that obtained by A.K. Bugrov [9]:
o
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F=T+0,A(x)+const. (28)
It should be noted that the need to accept the potential in the form (28) was
pointed out by A.S. Stroganov [30], but all his constructions were made within
the framework of the deformation theory of soil plasticity. A.S. Stroganov
emphasized [30] that the actual value of the dilatancy coefficient A is always
less than the value tgy , i.e. the condition of association A=tgy is not met.
A similar form of the potential surface was proposed in the works [32].
V.N. Nikolaevskiy [15] showed that the nature of the plastic potential
function corresponding to the dilatancy model depends on the sign of the
dilatancy coefficient A and is represented by the expression:

F=T*-Jigy(o, +H,) . (29)

For A <0, the surface corresponding to the function F has the form of an
ellipse arc, for A =0, a straight line segment, and for A >0, a hyperbola arc.

In the closing correlations A = /l(x) in the works of V.N. Nikolaevskiy,

the volumetric plastic deformation [16] and the density [14] are used as the
hardening parameter. In the work [14], the following formula is proposed to
determine the dilatancy coefficient:

2 2
A=— 1—[LJ for p<p™, A= 1_[;) J for p>p*, (30)
pcr p

Cr

where p is the current density, p~ is the critical density at a given

hydrostatic pressure p® =p“(0,,). The angle of internal friction is also
variable.

@ =@, +arcsin (€28
where ¢, is the angle of internal friction of the soil when it reaches the critical
density.

The variable value of the angle of internal friction ¢ determines the nature
of the dilatancy elastic-plastic model hardening, and the loading surfaces
represent a family of straight lines on the plane (Fig. 2).

In the formula (30), the density p is taken as the hardening parameter. In
this case, the following conditions are satisfied, which follow directly from the
initial preconditions of the model:

A>0if p>p;
A<0if p<p™; (32)
A=0if p=p~.

The expressions for the angle (coefficient) of internal friction (31) contain

two components, and when the soil reaches the critical density (porosity), one

of the components becomes equal to zero. The need to separate the strength of
sandy soil was noted as early as 1950 by A. Skempton and A. Bishop [27],
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who proposed to consider i /7
separately the strength due to n \Uil-1 W)

friction and due to dilatancy.

In 1958 B. Hansen introduced

the concept of dilatancy

angle. The variable nature of

the angle of internal friction

of the soil was emphasized by

K. Roscoe [5, 2] and A. On |/
Bishop [5]. The strength "Ha
division into two components
in the expression of the yield
function is also used by V.N. Shirokov [25].

Of the two components of the angle of internal friction, one (namely, the
dilatancy angle), as indicated, is a variable value tending to zero at the critical
density, and the other component is a constant value over a wide pressure
range and does not depend on the initial density.

In describing the concept of critical density (porosity), it was pointed out
the need to take into account its dependence on the hydrostatic pressure level.
At low pressures, a significant change in the critical density does not occur,
however, when it reaches o, about 1.0-2.0 MPa, it can significantly increase,

Po

Fig. 2. Loading surfaces. Meridional sections

and at o, >2.0 MPa, the dilatancy loosening is practically impossible to

achieve. To describe this phenomenon, the dependence of the critical density
on the hydrostatic pressure was introduced in [5] in the form:

Per ngra if o, >0,
20" — ° m_ o )
Do = Per - Per 0.31 + 3(pcr 2pcr) +ng if o, < o, < 0’ (33)
£ £
pcr:pg’ if Om < Pos

where pg. is the critical density in the absence of hydrostatic pressure, pl; is

the maximum density of the given soil, the soil medium parameter, taken
P, =-2,0 MPa. The dependence diagram (33) is shown on Fig. 3.

One of the most common issues in modeling the “structure-soil massif”
system is the choice of the p
calculation area boundaries. kS
The issue of choosing the P
model lower boundary is
especially acute if the object
of study is subsidence. In this
case, the calculation model po
sizes should be chosen so that g, <5
the influence of boundary

conditions on the forces Fig. 3. Diagram of dependence of critical density
on hydrostatic pressure

Po
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distribution was minimal [18]. This approach is implemented in the works of
Berezhnyi D.V., Sagdatullin M.K., Sultanov L.U., Petrov D.N., Demenkov P.O.,
Potiomkin D.O. [3, 18]. On the other hand, while reducing the impact on the
forces distribution, this leads to an unjustified increase in subsidence
deformations. In this case, it is recommended to limit the calculation scheme to
the compressible zone depth [17, 10].

However, often, due to the peculiarities of the studied objects, it is
impossible to use the recommendation to limit the calculation scheme to the
compressible zone depth. Therefore, the issue of developing such approaches
to modeling the “structure-soil massif’ system is relevant, for which the
subsidence values in the calculation were identical regardless of the selected
lower limit of the calculation model. In order to overcome these problems in
the works [28, 29] the detailed description of the accepted correlations, as well
as the step-by-step algorithm for the correction of the elasticity mole of the
reinforced elastic-plastic medium are presented:

Em
cctgp

y- KO ref

The above ratios make it possible to model the stress-strain state of the soil
medium, to determine the pressure distribution in the soil under its own weight
and various external influences, taking into account the medium heterogeneity,
changes in the relief and physical and mechanical characteristics in the
deformation process.

2. Finite element method model. Known analytical methods for
determining the structure deformation parameters are usually based on
idealized schemes, which significantly narrows the scope of their use. There is
a large layer of experimental methods, which are traditionally considered the
most reliable basis for obtaining real data. But in practice, we often face more
complex geometric shapes and mechanical processes. In this case, numerical
methods are brought to the forefront, the most common of which is the finite
element method (FEM). FEM has become very widely used in world
engineering practice. Almost all known computational complexes rest on its
scientific basis. However, there are a number of issues within the task scope,
the effectiveness of solution of which requires further development of existing
approaches. Structure design standards require considering joint work of
structures and bases. It is known that soils show significant nonlinearity, the
nature of which varies depending on the load type: deviator or isotropic. The
dependence of the deformation characteristics on the stress state in the base,
the process development over time, etc. adds to the difficulties.

The solution of the problems of elastic-plastic deformation of spatial bodies
is based on the use of the semi-analytic finite element method (SAFEM) and
the moment scheme of finite element (MSFE) [2,19]. The underlying
hypotheses allow us to describe arbitrary circular and prismatic geometric
configurations with a variable cross-sectional area and heterogeneous material
features under arbitrary boundary conditions (Fig. 4).

(34

inc
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Fig. 4. Closed circular and prismatic finite elements of SAFEM

Based on the basic circular and prismatic finite elements of SAFEM, a new
special finite element (FE) has been developed for modeling a nonlinear
elastic-plastic soil base. The feature of the accepted FE is the stress tensor
correction obtained at the next stage under the load parameter under the
assumption of the soil linear operation on the deformation increment. For soil
that is in the borderline state, the stress differential has the form:

do" = CMdzf = €M (dey - def)) = dol —dAc™ or

i 69
(o2

where C’¥ is the deformation constant tensor; de,,def,,def, are the

differentials of complete, elastic and plastic deformations, respectively; d UZ

is the stress increment provided that def, =0.

Within one step it is considered tt the material does not strengthen and for
it the condition of a borderline state is fulfilled:

%do"f =0. (36)
(e}

Solving together (35) and (36) we get the expression for d A . :

af Cmnlk d £y

_ aamn
V" o F 7
aauv 60”
and substituting this in (35) we get:
aF %Cmnlkdgkl
io_ g i _ ijgr o

do’ =do! -C P - o (38)

ao_uv aast

Dilatancy ratios are analogous to the use of the plastic potential function in
the form of:
F=T+0,A+const. (39)

After differentiation we get:
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oF _ i+ ASju (40)
aaij 2T 30 ’

where S; and o, are the components of the deviator and layer part of the

m

stress tensor, respectively.

o

Expression 6_’J , where f'is the yield function according to (24) is written
o

similarly:
S.. towo.
S _Si, Vi (41)
do? 2T 30,
Taking into account the expressions (40) and (41) for (38) we get:
do” =dO‘éj—{9Sij+K—AGijmjdL , (42)
T (o

where K and G are the volumetric and shear elasticity modulus, respectively,
related to the traditional parameters E and v ratios:
E E
K = ;G = s (43)
3(1-2v) 2(1+v)

dL is the small scalar multiplier:

dp =L Ggu KBV ja e (44)
A\ T o,
A is the constant, which is determined:
A=G+ KAtgy . (45)

The integration of the expression (42) allows determining the stress tensor

component increment Ac? at this step. The following method is more
efficient for calculating the equations discrepancies.

In the transition in (42) from the differentials to increments in the
assumption that Ac? and Ac? are determined from the same stress state o”
determined in the previous step by the load parameter then:

sio[1-_SAL s7 (46)
T +GAL

. KAAL .

ol =|1-—=2__ |5V . 47

“ ( O'm+KAAlJ ue “7)

Therefore, it is seen that for the soil which is in the boundary state, the
deviator S and the layer O'Z components of the stress tensor o’ are

proportional to the respective components S and o” , of the stress tensor

o, determined in the assumption that on the next deformation increment

Agy, the soil operates linearly:
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Y =q]Sg, O'Z =q20'Ze (48)
By substituting (48) in (46) and (47) we get:

KA
1 —tgy O-me_Te? 7

qlzT KA s (49)
e —tgy——+1
gy G
KA KA
L\ T St g
me tgt//?ﬂ

The correlations for ¢, and ¢, can also be obtained from the geometric
constructions by considering the meridional cross section of the plasticity
surface at a given step of the load parameter in the axes (7',0,,) in Fig. 5. The
correction process consists
in drawing a straight line at T Te, ome
the angle a to the axis o, A
through the point 4 to the
intersection with the straight B E““(M)_
section of the plasticity «
surface. The cross-point C
(T,0,,) will be the desired Meridional cross section
stress state. It can be seen T U e
from the constructions that

Om
AB
tga= BD’ where 4B and Fig. 5. Geometric interpretation of ratios

. . of the stress tensor correction
BD are the invariants of the

fictitious stress tensor determined in the assumed elastic work of the soil
outside the plasticity surface.

Therefore:
P P
tgazﬂzGdY :—Gdj/ :i. (51)
BD Kdel KAdel, KA
The equation of the straight line AC takes the form:
G
T_Teza(o-m_o-me)' (52)

To find Tand o, itis necessary to solve the system of two equations:

G
T=——(c, — y
KA (o-m o-me) e’ (53)

T=-0,tgy+7,.
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By denoting T'=¢,T, and o,, =q,0,,, from the system of equations we
find the values of the coefficients ¢, and g¢,, which are analogous to (49) and

(50), which proves the correctness of these coefficients definition.
Conclusions. Therefore, on the basis of modern numerical
implementations of the finite element method, the theoretical foundations of
the analysis of nonlinear deformation processes of machines and structures in
their contact interaction with the elastic-plastic medium within the three-
dimensional spatial problem taking into account the previous stress state and
load history are presented. The methodology of construction of computational
models of joint deformation and mutual influence of rigid structures and
essentially plastic external medium is developed, new special heterogeneous
finite elements of SAFEM of general form with variable geometrical and
physical-mechanical parameters and arbitrary boundary conditions for
approximation of arrays of hardly connected reinforced soils are developed.
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Conooeil 1., [lempenko E.FO., 3amuniox I'.A.
HEJIHIAHA 3AJTAYA JE®OPMYBAHHSA KOHCTPYKIIA NMPUA B3AEMOJIL 13
NPYXXHOIIJIACTUYHUM CEPEJOBULIEM

V crarti Ha 6a3i cydacHHX YHMCEIbHUX peasli3alliii MeToa CKIHYCHHUX SJIEMEHTIB MPE/ICTaBIICH]
TEOPETHUYHI OCHOBHM aHAII3y IMpoLeciB AeGOopMyBaHHS KOHCTPYKIiH MammMH 1 crmopyx mpu ix
KOHTAKTHIH B3aeMofii 13 MPyXHOIUIACTUYHHM HENIHIHUM IPYHTOBHM CEPEIOBHIIEM B paMKax
TPUBUMIPHOI MPOCTOPOBOI 3ajavi 3 ypaxyBaHHSM IIONEPEIHBOTO HAMPYXEHOTo CTaHy Ta icTopii
HaBaHTaXeHHs. CTBOpeHA METOMKA OOYI0BH PO3PaXyHKOBHX MOJENICH CyMiCHOrO ae(opMyBaHHS
1 B3a€EMHOrO BIUIMBY JKOPCTKHX KOHCTPYKLH 1 CyTTEBO IJIACTUYHOrO 3OBHILIHBOTO CEPEJOBHUIIA,
po3pobiieHi HOBI creliaibHi HeomHopiaHi ckindenHi enementn HMCE 3aranpHOro BHIISILy i3
3MIHHAMH T€OMETPHYHUMH 1 ()i3MKO-MEXaHIYHHMMH MHapaMeTpamMyd Ta MOBUIBHUMH TPaHHYHUMH
YMOBaMH IS AIPOKCUMALil MACHBIB MaJIO3B SI3HUX 3MIL[HIOBAaHUX IPYHTIB.

Kiao4oBi cjoBa: npyXHOIUIACTHYHE CEPENOBHUILNE, MOJEIb 3MILHIOBAHUX TPYHTIB,
HaniBaHAJITHYHUI METOJ CKIHYCHHHX €JIEMEHTIB, MOMEHTHA CXeMa CKiHUEHHOI'O €JIEMEHTA.

Solodei L1, Petrenko E.Yu., Zatyliuk Gh.A.
NONLINEAR PROBLEM OF STRUCTURAL DEFORMATION IN INTERACTION
WITH ELASTOPLASTIC MEDIUM

The use of numerical methods in the calculation of machines and structures, taking into account their
interaction with the elastic-plastic medium is largely determined by the complexity or even impossibility
of analytical calculation due to the complexity of structural schemes, heterogeneity of material features,
uneven soil layers, implementation of step-by-step work execution technologies and so on.

Compatible calculations of structures and nonlinear basis, which are described by modern
mechanical and soil models in one problem is a significant technical problem. And neither the existing
“problem-oriented” software packages, nor the “universal” ones - do not fully contain such models.

The tasks solution is possible only within the framework of numerical methods, the most common of
which is the finite element method (FEM). The construction of the calculated finite element model raises
many complex questions that require additional detailed study. In addition, the compliance with the state
building norms and regulations is an important factor for further practical use.

The combination of the latest achievements in the field of structural mechanics and soil mechanics is
a promising direction for the development of effective approaches for building discrete models of spatial
systems “‘structure-nonlinear base” for solving applied problems.

On the basis of modern numerical implementations of the finite element method the article presents
the theoretical foundations of the analysis of deformation processes of machines and structures in their
contact interaction with the elastic-plastic nonlinear soil medium within the three-dimensional spatial
problem taking into account the previous stress state and load history. The methodology of construction
of computational models of joint deformation and mutual influence of rigid structures and essentially
plastic external medium is developed, new special heterogeneous finite elements of SAFEM of general
form with variable geometrical and physical-mechanical parameters and arbitrary boundary conditions
for approximation of arrays of hardly connected reinforced soils are developed.

Keywords: elastic-plastic medium, reinforced soils model, semi-analytical finite element
method, moment scheme of finite element.

Conooetit U.H., [lempenxo 2.F0., 3amvinox " A.
HEJUHENHAS 3AJJAYA TE®OPMUAPOBAHUA KOHCTPYKIUI ITPU
B3AMMOJIEMICTBUU C YIIPYTOIVIACTUYECKOM CPEJIOM

B CTaTbC Ha 6336 COBPEMCHHBIX YHCJICHHBIX peanmauuﬁ METOJa KOHCYHBIX DJJICMCHTOB
IPE/ICTABJICHBI TCOPETHUYECKUE OCHOBBI aHAIM3a MPOLIECCOB Ae(hOPMHUPOBAHIS KOHCTPYKLUH MAIIHH
U COOpYXKEHMH IpPM MX KOHTAKTHOM B3aUMOIEHCTBUM C YIPYroIUIACTUYECKON HENIUHEHHOM
I'PYHTOBOIl Cpenoi B paMKax TPEXMEPHOH HpPOCTPAHCTBEHHOHM 3aJaud C YYETOM HpEIbLIYILEro
HalpsOKCHHOIO COCTOSIHHMSA M HMCTOPHM HArpy3KH. Co3;[a1-la METOAMKA IIOCTPOCHUSA PaCHYECTHBIX
Mojeneil COBMECTHOro Je(OpMHPOBAHHS ¥ B3aUMHOTO BIMSHHS JKECTKUX KOHCTPYKLHH U
CYIIECTBEHHO IJIACTUYECKOI BHELIHEH cpejibl, pa3paboTaHbl HOBBIC CIICLUAJIbHBIC HEOAHOPOAHBIC
koHeunble d1eMeHTsl HMCE oOmero Buga ¢ HEpeMEHHBIMH I€OMETPHYECKHMH U (DH3HKO-
MEXaHUYCCKUMU TMapaMETpaMu U MPOU3BOJIBHBIMU I'PAaHUYHBIMU YCIOBHUAMU [JI alllIPOKCUMAaLIMA
MaCCHBOB MaJIOCBSA3HBIX YIPOUYHSIONIMXCSA TPYHTOB.

KaroueBble clloBa: ynpyromiacTuyeckass Cpena, MOJENb YHPOYHSAIOILIMXCS TPYHTOB,
nonyananynuqecn(uﬁ METO/I KOHCYHBIX 2JICMCHTOB, MOMCHTHAA CX€Ma KOHCYHOI'0 3JIECMECHTA.
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VK 539.3
Conooeil 11, ITempenxo E.FO., 3amuniox I'.A. Heuninilina 3ana4a nepopmyBaHHS KOHCTPYKUiii
NMpU B3a€EMOJil i3 Mpy:KHOMIACTHYHUM cepenoBuiieM // Omip MmarepianiB i Teopis CIoOpyi:
Hayk.-Tex. 30ipH. — K.: KHYBA, 2020. — Bun. 105. — C. 48-63.

Posensinymo memoo po3s s3anisi 3a0a4 0e@opmMyeanHs KOHCMPYKYIU MAWuK i Cnopyo npu ix
KOHMAaKmHitl 63a€MOOI i3 NPYIHCHONAACMUYHUM HEIHITHUM SPYHMOBUM CEPeO0BULYEM.
In. 5. Bi6niorp. 32 Hass.

UDC 539.3
Solodei LI, Petrenko E.Yu., Zatyliuk Gh.A. Nonlinear problem of structural deformation in
interaction with elastoplastic medium // Strength of Materials and Theory of Structures:
Scientific-and-technical collected articles. — K.: KNUBA, 2020. — Issue 105. — P. 48-63.

The method of solving the nonlinear deformation problems of structures during their contact
interaction with the elastic-plastic medium is considered.
Fig. 5. Ref. 32.

VK 539.3
Conooeti U.H., [lempenko D.FO., 3amwvinioxk I'.A. Heauuneiinas 3apaya aedopMHpOBaHMS
KOHCTPYKIMI NpH B3aHMOJAEHCTBHM ¢ yNpyromiacTudeckoi cpenoii / ComporusieHue
MaTepualoB U Teopust coopyxxeHuid. — 2020. — Beim. 105. — C. 48-63.

Paccmompen memoo pewienus 3a0a4 0eqhopMupo8anust KOHCMPYKYUL MAWUH U COOPYICEHUL
npu ux KOHMAKMHOM 83AMOOCUCMEUU C YAPY2ONIACMUYECKOU HeTUHEUHOU ePYHMOGOU CPedoll.
Wn. 5. bubnuorp. 32 Hass.
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