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The paper presents the results of investigation of the axial beat loads’ influence on the
transverse rotating rods’ oscillations and their stability. The perforator's long drills are considered as
objects of investigation.

The analysis of different author’s papers that are studded the dynamics of oscillations of shafts
and rotating rods is carried out. The relevance of the research topic is substantiated. The model of
the considered dynamic system is described and equations of oscillations in space are given.

The technique for investigation is presented. This technique is based on search for new bend
forms of rotating rod by solving the equations of oscillations with using the Hubbolt time integration
method and the polynomial functions (splines) that are described the current bend form. In it, the
spline functions are found by current bend form approximation where each of the found functions is
responsible to certain point of rod elastic line and describes the position of nearby points.

Described technique was realized in a computer program with graphic user interface that is
developed by author. Program allows to monitor for dynamics of the oscillatory motion of the
modeled system in real-time by calculating and drawing the current band forms of the rotating rod
during the oscillation.

Diagrams with regions of stable and instable motion of the rods, that were found by different
parameters and boundary conditions are shown. The analysis of the results is obtained and the
conclusion about possibility of operating the equipment in certain frequency ranges is done. The
space oscillating process of rotating rods is considered with account of the gyroscopic loads and
geometric nonlinearity.

Keywords: numerical differentiation, complex bend forms, spline, geometric nonlinearity, axial
loads, hammer drills.

Introduction. The tasks of stress-deformed state and oscillations of elastic
rotating rods, shafts and rotors have actuality while structural elements of
machines and devices are designed. The rotating rods, shafts and rotors are
responsible elements in the constructions of engines, turbines, wind and
hydropower plants, drill strings and other machines. For these objects the cause
of the development of oscillations can be both inertial loads and periodic
external loads, such as periodic axial loads.

For example, during the operation of drill string the influence of bottom hole
reaction can be periodical as a result of its transverse oscillations, at which the
axial moving of its movable end occurs. During the operation of industrial
hammer drill the action on the drill is periodic too. During the movement of
vessels, the periodic influence on the shaft from propeller can happen, when the
vessel passes through turbulent zones. Also in shafts, the periodic influence can
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be brought from oscillation of the adjacent section, which is transmitted through
the coupling due to axial movements.

In recent years, the dynamic tasks of oscillations of shafts and rotating rods
were investigated in works of many authors.

The dynamic behavior of drill strings in super-deep wells was considered in
papers [4, 5]. The column is modeled by vertical rod, taking into account the
longitudinal loads and torque at its lower end. The critical rotational speeds
were calculated with various values of external loads that are taken into
consideration. The modes of natural oscillations and buckling of the drill string
were found. The task is viewed in space taking into account the centrifugal and
coriolis inertial loads, also by axial loads with constant values.

The task of rotating shaft with influence of axial loads to the propagation
characteristics of the elastic waves is studied in paper [14]. The shaft is viewed
with non-uniform cross-sections per length. Axial loads considered with
constant values.

The oscillations of shafts and rods under the action of periodic loads were
considered in different papers. The paper [10] presents the study of problems
with elastic stabilization and long-term strength of the system under cyclically
changing external impacts that are appearing because of eccentricities. Task is
considered taking into account gyroscopic loads, in linear statement. The paper
[9] presents the results of study of space bending oscillations of horizontal rod
that is rotating around its axis. Rod is under the action of periodic harmonic
force of self-weight per length. The task is considered taking into account
gyroscopic loads, too.

Questions about the transverse oscillations of the rods under the action of
axial periodic loads, also the tasks of longitudinal-transverse oscillations under
the action of beat loads are considered in papers [7, 8]. But in them the
investigated rods don't rotate.

In nonlinear statement the dynamics of the drill operation is considered in
paper [13], taking into account the axial periodic impact force, but with the aim
of studying the vibrations that occur in the coupling.

As result of review we can see, that investigating the dynamics of considered
objects, the parametric oscillations of rotating rods under the action of periodic
axial beat loads have an opened interest. This is due to actuality of the tasks of
vibratory drilling of deep holes.

This paper presents the results of investigating the dynamic behavior of
perforators’ long drills under action of an axial beat load. It study has interest
for long flexible drills.

Problem statement. In the process of oscillation of such rotating rods with
various lengths, under the action of external periodic forces, the various bending
forms that change in time are possible. Beside this, the various character of the
oscillatory motion itself for various physical, geometric and dynamic parameters
are possible too.

As a dynamic model is considered a rod with length / (Fig. 1) that is under
the action of periodic axial load P(¢). The rod rotates with an angular rotational
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speed w around the rectilinear axis O.X; of the stationary coordinate system
0:X1Y,Z,. The rotating coordinate system OXYZ is tied to the rod and rotates
with it. The direction of OX axis coincides with direction of OX; axis. Axis of
rod in deformed state is coinciding with the OX and O.,X, axis. The oscillatory
motion of the rod in the OXYZ coordinate system is characterized by y(x,f) and
z(x, 1) displacements of the points, that belong to the axis of rod, in the OY and
OZ coordinate axes’ direction, respectively.

Ty

Fig. 1. Dynamic model of system.

In this statement, the oscillations of such rotating objects in space are
described by the corresponding system of differential equations [11], which
taking into account the geometric nonlinearity and the axial periodic force [3]
have a form:
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where E — elastic modulus of rod’s material; /;, [, — inertia moments of rod
section in mutually perpendicular planes; » — radius of gyration; m —mass of
unit per length; @ — rotational speed of rod around the axis that is coincided with
the axis of rod in undeformed state; P(f) — periodic axial force; 1/p,, 1/p, —

main curvatures of rod’s axis in mutually perpendicular planes in form:
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If the rod is under the influence of an axial beat load, this action is modeled

by function, that looks like as: P(f) = Py (@*% _ 42 for which the
changes of amplitude in time is shown in Figure 2.

. JU JUUL..

Fig. 2. The diagram of function P(¢)

Technique. For investigation of the dynamics of motion for considered
objects in this paper propose to use the technique in which the process of
oscillation is modeled based on repeated (cyclic) solving the system of
differential equations for every point of system in order to find the new
coordinates of positions for these points in each next point of time ¢+A¢.

In it, the solving of equations (1) for searching of new bend form for the next
point of time is based on the use of polynomial functions (splines) [1] that
describe the current bend form and the Houbolt time integration method [12].
The spline functions [6], in turn, are determined by approximating the current
bend form, where each of found functions is responsible to certain point of rod
elastic line and describes the position of nearby points.

In result of the approximation, the line of the current bend is described by

. . 2 3 4
the array of n polynomial functions f, (x)=a,q +a, X+ a,x" +a,3x” +a,4x",

each of which corresponds to certain point of rod elastic line and tied with
nearby points (Fig. 3).

n+3 n+6

Fig. 3. Bend form approximation for point n to function f, (x)
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The search process of each functions f, (x), namely coefficients a,, a1, an,

a3, ang, can be executed by the coordinates of points n—2, n—1, n+1, n+2, that lie
near point n. However, it is necessary that the functions of all derivatives of
spline have been continuous and smooth lines. Therefore, these points are
considered as intermediate and used to control of continuity and smoothness.
The approximation executes by coordinates of points n—6, n—3, n+3, n+6 and
current n, which are considered like as characteristic.

The calculation of the coefficients a,y, a1, @n, an3, Gu, for each function,
executes by solving the system of five equations (2) using the coordinate values
of each of five points that belong to considered part of rod elastic line

o +an1x:176 + anzxia + an3x,3,,6 +an4x3—6 =V
o +anl'x;l173 + an2x3,3 + an3x3,3 +an4x373 =Vu3
ano +anl'x;l1 + an2x3 + anSxS + an4x:11 =Vn (2)
o +anl'x;l1+3 +an2x3+3 +an3x3+3 + an4x3+3 = Vi3

1 2 3 4
Ao a4 Xpse T X T 03%006 T AnaXuie = Vaso

Found functions f,(x) are differentiated and found derivatives are used to
solve the system of differential equations for each point of rod elastic line
separately for searching of next bend form for next point of time t+At.

Boundary conditions. Using the considered technique the boundary
conditions at the ends of the rod are modeled by schemes based on imaginary
prolongation of the elastic line of the rod. Let’s consider few basic boundary
conditions.

The hinged boundary at the end of the rod is modeled by analogic scheme,
but for the end point. namely, for searching the function for point m, use the
value y,=0, and assumed that for x,,,,= (2x,—x,,_), X,...= (2x,—x,,_,), the values
V1= Vets Ymia= Vo> TeSpectively. the points m+1, m+2 belong to the line of
the imaginary continuation of the rod elastic line and their coordinates are
determined by corresponding relations using the coordinate’s values in points
m—1 and m-2. such relations give that every time after approximation we get a
function whose value in point m will be y,=0, and the value of its second
derivative will be y,,"=0.

The pinched boundary at the beginning of the rod is modeled by scheme,
where, for point 0, use the values x,=0, »~=0, and assumed that for
X = =Xy, X ,= —X,, the values y ;= y,, v ,= y,, respectively. such relation gives
that every time after approximation we get a function whose value in point 0
will be y,=0, and the value of its second derivative will be y,"#0.

The pinched boundaries at the end of the rod are modeled by scheme, where,
for point m, use the value y,=0, and assumed that for x,,,,= (2x,—x,,_,), X,,1,=
(2x,x,,5), the values ¥,,,,= V1> Y= Vmo»> T€Spectively. such relations give



314 ISSN 2410-2547
Omip matepianiB i Teopis cropyx/Strength of Materials and Theory of Structures. 2020. Ne 104

that every time after approximation we get a function whose value in point m
will be y,=0, and the value of its second derivative will be y,,"#0.

For beginning of the oscillatory motion, it is necessary that the system be out
of equilibrium, in which the rod will take the initial bend form. Such action can
be caused by the action of random instant load.

During the operation of hammer drills, one of such instant loads can be the
bending moment that occurs at the end of the drill due to the uneven strength of
particles of concrete that are crashed by beating.

In this representation, the action of the bending moment is modeled by one-
time instant load at the end of the rod and the required initial bend form is
determined by the method of initial parameters.

The initial bend form is found for the time =0, like a point of start of
oscillation, believing, that the action of inertial loads is absent, since before the
start of oscillations the axis of the rod in undeformed state passes through the
axis of rotation.

So, in this way, the analysis of the geometric position of rotating rod in
space, the approximation of bend form (elastic line) and its differentiation is a
first component of solving the equations of oscillations and performs in
conditionally fixed moment in time.

The oscillatory motion, especially during rotation, is a dynamic process in
which at each next moment in time not only the geometric positions of all points
of the system have changes, but such parameters as rotation angles, speeds and
accelerations have changes too. Therefore, the second component of solving the
equations is the solve of task in time, that performs using the numerical Houbolt
integration method, in which makes the search of new bend form for each next
point of time #+A¢, based on current bend form and its derivatives.

Realization note. The considered technique is the basis component of the
algorithm for the numerical solving of the differential equations of oscillations
by rotation of rod systems in space and time. The algorithm realized by
computer program with graphic user interface that helps to monitor for the
dynamics of oscillating process of modeled system in real time. Besides this, the
program gives the capacity to make the analysis of behavior of modeled system,
find the dynamic instability fields and draw the diagrams of found fields.
Moreover, the program draws the graphics of oscillations and changes of
angular speeds and accelerations.

Results. In this paper shown the results of investigating the dynamic
behavior of perforators’ long drills under action of an axial beat load that were
gotten by described technique and program. Among them: long drills with
length 800...1000 mm and diameter 10...22 mm, boers with length 900...1000
mm and diameter of rod 18...22 mm, extensions for drills with length
750...1100 mm and diameter of rod 18 mm.

The priority amounts of industrial hammer drills with an SDS Max type
chuck operate on rotational speeds in range of @ = 25...75s” and beat
frequencies in range of = 170...380 s™'. Household hammer drills with an SDS
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Plus type chuck operate on rotational speeds in range of @ = 75...250 s™' and
beat frequencies in range of 0= 380...580 s™.

During rotation with different speeds under action of an external periodic
force with different frequencies the oscillations’ amplitude can be constant (with
critical parameters), fading out or growing up. This characterizes the stable or
instable behavior of an object in such dynamic process.

For example, for steel rod with diameter d = 12 mm and length / = 1 m
during rotation with critical speed of the 1-st harmonic that is equal 145.5 s™,
but without action of external forces, the transverse oscillations in the rotating
coordinate system do not occur (because rod is in equilibrium of inertial and
elastic forces). In stationary coordinate system, the oscillations occur with
constant amplitude as the projection on the coordinate planes. Herewith, under
the action of periodic axial beat load with frequency that is equal to the value of
critical rotational speed, the oscillations occur with growing amplitude, which in
the projection on the coordinate axes have the form shown in Fig. 4.
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Fig. 4. Oscillations of steel rod that is rotated with speed equal 145.5 s™,

under action of the axial beat load with frequency equal 145.5 s™'.
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Therefore, such oscillatory motion of rotating rod is instable and since over
the time it will have been destroyed because of constant amplitude growth.

As results of study of mentioned objects in Figures 5-9 the fields of stable
and instable oscillations by rotation are presented. These fields show instable
regions in depends of rotational speeds @ and beat frequencies 6, which were
found for the reviewed objects by various geometric, physical parameters and
boundaries. Figures 5-7 show the results for rods with hinged boundaries at both
ends. Figures 8 and 9 show the results in case when one end of rod is pinched
other is hinged.

The fields of instable oscillations are displayed filled gray. White colored
regions are the fields of stable oscillations. The rectangles with dashed borders
show the operating frequency ranges for priority amounts of industrial hammer
drills with SDS Max type chuck and household hammer drills with SDS Plus
type chuck. Numerically these ranges are presented upper in this part.
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Fig. 5. Dynamic instability fields of rods with diameter d = 10 mm,
length /= 0.8 m, under action of axial beat load P(f), with hinged boundaries
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Fig. 6. Dynamic instability fields of rods with diameter d = 12 mm,
length /=1 m, under action of axial beat load P(z), with hinged boundaries
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Fig. 7. Dynamic instability fields of rods with diameter d = 18 mm,
length /= 1.2 m, under action of axial beat load P(f), with hinged boundaries
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Fig. 8. Dynamic instability fields of rods with diameter d = 10 mm,
length /= 0.8 m, under action of axial beat load P(), with pinched and hinged boundaries
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Fig. 9. Dynamic instability fields of rods with diameter d = 12 mm,
length /=1 m, under action of axial beat load P(r), with pinched and hinged boundaries

As we can see from diagrams, for various steel rods with their parameters
and different boundary conditions there are frequency ranges at which the drills
of perforator in use will start instable oscillations and over the time they can be
destroyed.

So, for example, for industrial hummer drills, such regions are observed for
rods with diameter =10 mm and length /=0.8 m (Fig. 5), with diameter
d=12 mm and length /=1 m (Fig. 6), with diameter ¢=18 mm and length /=1.2 m
(Fig. 7), with hinged boundary conditions. And in fact there are in rather narrow
ranges.

For household hammer drills that are using in higher frequency ranges, as
we can see from the diagrams, the instable regions are much wider and observed
both: under hinged boundary conditions at the ends and with boundary
conditions where one end is pinched other is conditionally hinged.
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Conclusion. The considered results of investigation of the axial beat loads’

influence on the stability of rotating rods in space, studding perforator’s long
drills as example, show, that for certain ratios of rotation and beat frequencies
there are regions of instable oscillatory motion in which running the equipment
can inevitably lead to its destruction, that can turn to undesirable injuries or
tragic consequences either at work or at home.
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Heoin B.O.
MMAPAMETPUYHI KOJIMUBAHHS CTEPKHIB, IO OBEPTAIOTHCSI I A1€XO
MMO310BKHBOI'O YIAPHOI'O HABAHTAKEHHSI

B po6oti HaBezmeHi pe3ysibTaTH AOCHIPKEHHS BIUIMBY IO3OBXHIX yJAapHHX HaBaHTa)KCHb Ha
XapakTep MOMEePeYHUX KOJIMBAHb CTEPXKHIB, 110 00EpTArOTHCS Ta X CTiHKICTh. B sikocTi 00’€KTiB
JIOCTiIKEeHHs 00paHi TOBroMipHi po6oui opranu nep¢hopaTopis, 110 MAIOTh 3HAYHY FHYYKICTb.

3nilicHeHo aHami3 myOunikamii pi3HUX aBTOPIB, sKi 3afMAlOTHCS JOCTIUKCHHAM IHHAMIKH
KOJIMBaHb BAJiB Ta CTEPIKHIB, 110 0OCPTAIOTHCS Ta OOIPYHTOBAHA aKTyalbHICTh OOPAHOI TEMAaTHKU
nociimkeHHs. OmucaHa MoJenb AWHAMIYHOI CHCTEMH, IO PO3MJISAAETHCS, HABEACHI DIBHSHHS
KOJIMBAJIHOTO PyXY Y POCTOPI.

IIpencraBieHa METOAWKA NOCHIDKEHHS, sIka OyIyeTbCs Ha IOLIYKY HOBHX ()OpPM BHUIHHY
CTEp)KHIB IPH OOEpTaHHi, Yepe3 PO3B’s3aHHS PIBHAHb KOJMBAJIBLHOI'O PYXy 3 BHKOPHCTAHHSIM
HOJIHOMIaNBHUX (YHKIIH (CIUIaifHIB), 1[0 OHHMCYIOTH (OPMY BUTHHY, Ta METOIl IHTErpyBaHHS 3a
gacoM Xy60onTa. B 1iif Meroauui cruiaitH-(yHKIT OTPUMYIOTHCS AIPOKCUMALIIEI0 TOTOYHOT hopMu
BUTHHY, [I¢ KO)KHA 3 HaiiJeHHX (yHKLIH BIANOBiZa€ 3a IMEBHY TOYKY HPYKHOI JIiHII CTEpXHS Ta
OIIHCYE MOJIOXKEHHS CYCITHIX TOYOK.

Hageneni niarpamu, 1o BigoOpaxaroTh 00JIacTi CTIKOro Ta HECTIHKOrO pyXy CTEpXKHIB IIPH
PI3HHX HapaMeTpax Ta IPAHMYHUX YMOBax. 3[iHCHEHO aHaNi3 OTPUMAHHX PE3y/IbTATIB Ta BUCHOBOK
PO MOXJIMBICTH eKCIuTyaTanii 00JafHAaHHS y MEBHHX Aiana3oHax 4actoT. IIpolec KOIMBaIbHOIO
PyXy PpO3LISSHYTO Yy HPOCTOPI 3 YpaxyBaHHSAM TIEOMETPUYHOI HENIHIHHOCTI CTEpXKHA Ta
ripOCKOMIYHHX HABAHTAXCHb.

KurrouoBi ci1oBa: uncensHe qudepeHioBan s, CKIaaHi (OPMU BUTHHY, CIUIAHH, TeOMETPUYHA
HEJTHIHICTD, MO3/I0BXKHI HABAHTAXXCHHS, YIapHi HAaBaHTAXEHHS, 1ep(POpaTopH.

Heoun B.O.
IMAPAMETPUYECKHUE KOJIEBAHUS BPAIIIAIOIMUXCS CTEPXKHEM IO/
JEACTBUEM ITPOJIOJBLHOM YIAPHOM HATPY3KH

PaCCManl/lBaK)TCﬂ HEKOTOPBIC PE3YJIbTATBl HCCICOOBAHUS BIIMAHHUA IMPOAOJIBHBIX YAapHbBIX
Harpy30K Ha XapakTep MONepeyYHbIX KOoJeOaHWH BpAILAIOIIMXCS CTEPIKHEH M UX YCTOHYMBOCTH. B
Ka4yecTBE 00BEKTOB HCCIICAOBAHMUS ObLIN BBHIOPaHBI JUIMHHOMEPHBIC pabo4re opraHsl mephopaTopos
€O 3HAYHUTEIBHONW FTHOKOCTBIO.

B pabore ocyluecTBIEH aHaIM3 MyOIMKALMH Pa3HbIX aBTOPOB, 3aHUMAOLIMXCSl HCCIICIOBAHUEM
JIMHAMKMKH KOJICOAHHI BaJiOB M CTEPXKHEH, Bpallaroumecss 1 000CHOBaHA aKTyaJbHOCTh TEMATHKH
uccienoBanusa. OmnucaHa MoOJENb PaccCMaTPUBAEMON JUHAMHYECKOH CHUCTEMbI, HPUBEICHBI
YPaBHEHUsI KOJI€0ATEIbHOTO ABIKEHHS B IIPOCTPAHCTBE.

IIpencraBieHa MeToiMKa UCCIENOBAHUS, KOTOPask CTPOMTCS HAa MOMCKE HOBbIX (hopMm u3ruba
BPALIAIOLIMXCS CTEPXKHEH pelIeHHEeM ypaBHEHHIl KO0JIe0aTeIbHOro JBHMIKCHUS C HCIIOJIb30BAHUEM
HOJIMHOMHAIIBHBIX (DYHKIMH (CIIJIaHHOB), OMHUCHIBAIOIIMX TEKYIIyl0 (GopMy u3ruba, ¥ METoie
MHTErpUPOBaHUsS 10 BpemeHH XyOOonta. B 3Toif Merommke crutaH-QYHKIHH HaXOZSTCS
anmnpoKcuManuen Tekyiuei (opMbl M3ruba, riae Kakaas W3 HalJCHHBIX (YHKLUMH OTBeyaer 3a
OIpEJIICHHYIO TOUKY YIPYTOW JMHUY CTEPXKHS M OIHMCHIBACT ITOJIOKEHUE COCETHUX TOYCK.

IIpuBeneHbl AuarpaMMbl, OTpakalolMe 00JIACTH YCTOHMYMBOI'O M HEYCTOHUMBOIO JIBUIKCHUS
CTepXKHEH NpU pa3JIMuHBIX [apaMeTpax M TIPaHUYHBIX YycioBusAX. OCyIIECTBIEH aHalu3
IMOJTYYCHHBIX PE3YJbTAaTOB MU CACJIaH BBIBOA O BO3MOXXHOCTH OSKCIIyaTalluH OGOPyZlOBaHMﬂ B
OINpE/ICNIEHHBIX  JMana3oHax uvactoT. Ilpomecc KonebaTeNbHOrO ABMKEHHS PAaCCMOTPEH B
HPOCTPAHCTBE C YYETOM I'MPOCKONNYECKUX HHEPLIMOHHBIX Harpy30K Ha BpalL@IOLIUICs CTEPKEHb, a
TAKXKe ¢ y4ETOM re€OMETPUYECKON HEIMHEHHOCTH.

KiaroueBble cjioBa: 4uCICHHOC AU(QEepeHInpOoBaHe, CIOXKHbBIC (OpMbI H3ruba, CIUIalH,
reOMeTpUYeCKasl HEMMHEHHOCTb, TPOJOJIbHBIC HATPY3KHU, YAAPHbIC HArpy3KH, ephopaTopsl.
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The paper presents the results of investigation of the axial beat loads’ influence on the transverse
rotating rods’ oscillations and their stability.
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