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The article presents an algorithm for solving linked problems of thermoelasticity of elastomeric
structural elements on the basis of a moment scheme of finite elements. To model the processes of
thermoelastic deformation of structures with initial stresses the incremental theory of a deformed solid
is used. At each step of deformation, the stiffness matrix is adjusted using an incremental geometric
stiffness matrix. The use of triple approximation of displacements, deformations and volume change
function allows to consider the weak compressibility of elastomers. The components of the stress tensor
are calculated according to the Duhamel-Neumann law. To solve the problem of thermal conductivity, a
thermal conductivity matrix considering the boundary conditions on the surface of a finite element is
constructed. A sequential approximation algorithm is used to solve the thermoelasticity problem. At
each stage of the solution, the characteristics of the thermal stress state are calculated. Based on the
obtained components of stress and strain tensors, the intensity of internal heat sources is calculated as
the dissipative energy averaged over the load cycle. To calculate the dissipative characteristics of the
viscoelastic elastomer the parameters of the Rabotnov’s relaxation nucleus are used. Solving the
problem of thermal conductivity considering the function of internal heat sources allows you to specify
the heating temperature of the body. At each cycle of the algorithm, the values of the physical and
mechanical characteristics of the thermosensitive material are refined. This approach to solving
thermoelastic problems is implemented in the computing complex "MIRELA+". Based on the
considered approach, the solutions of a number of problems are obtained. The results obtained
satisfactorily coincide with the solutions of other authors. Considering the effect of preload and the
dependence of physical and mechanical properties of the material on temperature leads to significant
adjustments to the calculated values.

Key words: finite element method, elastomer, thermoelasticity, dissipative warming, initial
stresses.

Introduction. In solving related problems of thermoelasticity of elastomeric
structural elements, various theories and approaches are used, which are based
on the relations of the thermoelasticity obtained by many researchers [1-6] and
others. One of the most important criteria for the study of viscoelastic bodies
with a non-uniform temperature field is to take into account the temperature
dependence of physical and thermophysical characteristics of the material:
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modulus of elasticity or shear modulus, coefficient of thermal expansion and
coefficient of thermal conductivity

In the case of a slight increase in temperature, its effect on the mechanical
behaviour of the viscoelastic body can be neglected and an unrelated problem of
thermovisoelasticity can be considered. This approach is reflected in [7] and others.

When using a coupled linear model, the temperature and thermoelastic states
are determined by the solution of the system, which consists of the equations of
thermal conductivity, classical equations of motion, Hooke's law equations and
classical compatibility equations [8-11], etc.

It is obvious that all thermomechanical processes depend on time and for
their research there are problems called non-stationary (dynamic). However, we
can identify a number of processes, thermomechanical state, during which,
although it changes over time, but from a certain point in time, the system
comes to a stationary (static) state, which does not depend on time. In addition,
it should be noted that elastomers are a nonlinear viscoelastic material and their
stress-strain state depends on the load history.

1. Problem statement and its solution. The formulation of the related
problem for a quasi-stationary formulation can be represented as the equation
Biot and the equation of thermal conductivity [11].

The formulation of the initial provisions for the description of the
deformation process considering the initial stresses will begin with the
representation of this process as a sequence of equilibrium states:

Q®.0M @ oM . o®)

where Q(O), Q") _ initial and final state of deformation respectively; Qm .

arbitrary intermediate state.
It is considered that for all intermediate states of stress, strain, displacement
known throughout the history of

deformation to the state Q. Let the
position of an arbitrary point of a body in
states QO QM M) are
determined by the radius vectors of these
points r'®, ¥, r"*Y_ The body is referred
o to the basic Cartesian coordinate system
and the coordinates of the points are
respectively equal X;,z;,Z; (i=1,2,3).
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On the other hand, taking the initial state Q™ and using the rectangular
coordinates of the increase in deformation can be determined [12]:
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The increments of deformations are connected by the relations:
. 0X, 0X dz, 0z
8;' =—"—"E,, & :_m_nEZm .

The components of the deformation gain tensor can be represented as linear
and nonlinear components:
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Jacobian transformations: D =

l, 8 +ul/, i,j:

To describe a stress state, we introduce the Euler stress tensor. At points O®, the

components of the stress tensor have the value of Gg , acting on the faces

zj —const, (z; +dz;) —const and o] +o” , which acting on the faces Z; —const ,

n+l)

(Z; +dZ;)—const an infinitesimal parallelepiped including a point 0
At the point 0"V the stress can be described by a modified Kirchhoff tensor
[12].
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Variational statement of the problem for an elastic body with initial stresses
with given additional mass and surface forces in the form of the principle of

virtual work in the state Q"D looks like:
m[(cg' +67 )oej; +(q) +4; )Sui]dV — [J ! + p)dAuds™ =0
4 S

where p;, g;— vectors of surface and volumetric additional forces at n+1 step.
If Q" — equilibrium state, then in the equation the terms of the variation
of elastic energy and taking into account the initial stress:
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The equilibrium equation takes the form:

i*set _ Lol k Ok 1 o () _o.
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To study the stress-strain state of spatial structures made of elastomers,
consider the isoparametric finite element in the form of a hexagonal
parallelepiped with an edge length of 2. The origin of the basic coordinate
system Z; and an arbitrary local system x;, the axis of which coincides with the
direction of its edges, placed in the centre of the cube. Consider the construction
of matrices of stiffness of a finite element with initial stresses based on the
moment scheme of finite elements. Under the pre-stresses we mean those
stresses that arose in the structure in the initial state, i.e. before the deformation
process under consideration, before the application of the working load.

The solvating relations in general case can be represented as:

[ K+ K3 () ={P*}

where K{' — incremental geometric matrix of stiffness, which taking into

account the action of prestresses [13].
When forming a matrix K*' for a weakly compressible elastomeric layer, a

moment scheme of finite elements with triple approximation of displacement
fields, deformations, and volume change functions is used. [14].

The components of the stress tensor are determined by the Duhamel —
Neumann thermoelasticity law. To solve the problem of calculating the
temperature of dissipative heating, it is necessary to solve the problem of
thermal conductivity. To construct a thermal conductivity matrix for a layered
finite element, the hypothesis of continuity of temperature fields and heat fluxes
at the interface is used.

In matrix form, the system of equations for the layer takes the form:

[1){r}+ [ YT+ P+ (S} =0,
where H — thermal conductivity matrix, H*” — matrix conditioned to boundary
conditions of the 3rd kind on the surface of the construction, P — equivalent load

vector conditioned to the internal heat generation source, S — equivalent load
vector conditioned to heat fluxes and body surface temperature.

The heat generation function is calculated as averaged over the deformation
cycle.

The solution of the linked problem is performed using the method of
successive approximations.

2. Results of the calculation and analysis of solutions. Let us consider the
process of determining the temperature of dissipative heating of elastomeric
structures as a solution of the linked problem of thermoelasticity for a stable
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mode of cyclic deformation and heat exchange with the environment. In this
case, the solution of the quasi-static thermoelasticity problem requires the
solution of several problems: determination of the function of internal sources in
an elastic - hereditary body (solution of the thermoelasticity problem) at the
initial temperature; calculation of the temperature field under given boundary
conditions (solving the problem of stationary thermal conductivity); solving the
problem of thermoelasticity for the final temperature of self-heating. When
constructing a mathematical model of the problem, it is assumed that the stress
state significantly depends on the coordinates, as a result of which the field of
heat and temperature sources is inhomogeneous. In addition, there is a need to
take into account the dependence of physical and mechanical properties on
temperature. The method of successive approximations is used to solve the
related thermoelasticity problem.

The algorithm for solving the related problem is represented by the
following sequence:

1. From the solution of the thermoelasticity problem [Kij :|{u j} = {Pi } the

vector of nodal displacements {u;} at the set amplitude of fluctuations is
defined. Vector of the right part {P’} determined by the stiffness matrix taking
into account the initial stresses and boundary conditions in the form of
displacements on the surface of the finite element. For a separated finite element
the vector of internal forces is determined by the formula:

() =1 [ ] [ [ bty AT [y ' [ Ty ot}

where the first term is a vector due to elastic displacements, the second term is a
vector of forces due to thermal displacements.

2. To determine the power of internal heat generation sources, it is necessary
to determine the amount of scattered energy per load cycle.

The use of the simplest hypotheses about the homogeneity of the
displacement field in the direction of reinforcement and the homogeneity of the
field of generalized forces for shear stresses and normal stresses to the fibers,
allows you to calculate the power of internal heat sources as an average, equal to
dissipative energy. The power of internal sources for cyclic loading can also be
determined by the formula:

MO (6) 4y

j Sl

3. The temperature field is determmed from the solution of the stationary
thermal conductivity problem.

The thermal conductivity problem is nonlinear because the matrix [H] and
the equivalent heat load vector {R} depends on temperature.

The system of solving equations of stationary thermal conductivity using the
method of successive approximations is written in the form:
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[H(k—l)]{T(k)} = _{R(k—l)} :

The iterative process of solving problem continues until the specified
calculation accuracy is reached.

After determining the temperature procedure begins with the 1st point. In
case when physical and mechanical properties of the material depend on
temperature, at each iteration components of the tensor of elastic characteristics,
components of the tensor of thermal conductivity, as well as the component of
the matrices of rigidity and thermal conductivity of the construction are
recalculated.

3. Results of the calculation and analysis of solutions. To study the
convergence of the results obtained using the proposed approach, we consider
solutions of problems for which the literature provides solutions based on other
approaches.

Problem 1. Consider the deformation of a layered thermosensitive
cylindrical shell, the left end of which is rigidly clamped, and the right free,
which is under the influence of a non-uniform stationary temperature field of the
form [15]:

™ =1 )+ 1P (), k=1,2, ..., n,
where n — number of layers; z — the coordinate calculated along the outer normal
to the middle surface of the cylinder.

Physical and-mechanical characteristics of the layers depends on
temperature:

k)(k
ED =B (1+&10) , 6O = 60 (140® 10|,
o o 1+ 702), 12123,

where §(k) ,y%lk),y(zlf) — experimentally determined constants, which

characterize the dependence of elastic modules and coefficients of thermal
expansion on temperature.

The Poisson's ratio for the thermosensitive materials, which are under
consideration, is almost independent of temperature, so we consider it constant.
The components of the stress tensor arising from the temperature are determined
by the Duhamel-Neumann law.

Physical and mechanical parameters are taken as follows:
Ejg = B3 =1,704-10Pa;  Ep, =2,808-10°Pa;  p, =%; n==&;

Vip =0,106;  vo;=vi3 =0,174; vy =0,064; & =& =& =—0,25-107%;
Ty =0G=1,2,3); 7, =-0,2413-107K"; y;3=0;y, =-0,2445-10" K';

049 =0,1134-107K™; 01, =0,1418-10* K" 013y =0; /=0,2m; 2/ =0,04m;
R=0,4m.
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The constructed system of equations in displacements with variable
coefficients is solved using the proposed approach. The obtained results
satisfactorily coincide with the results obtained in analytical and approximate
solutions using shell theory by the authors [15].
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Fig. 2. Distribution of radial displacements

Fig. 2 shows graphs of radial displacements, obtained using the MIRELA+
complex (curve 1) and the authors [15].
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Fig. 3. Temperature distribution in the cross-section z = //2
Preliminary deformation: 1) A=0; 2) A=0,0lm;3) A=0,02m

Problem 2. Dissipative heating of a hollow cylindrical shock absorber under
preload conditions. The sizes of the shock-absorber: R, = 0,035 m, R, =0,1 m,
h =0,175 m. Elastic characteristics of rubber 2959: equilibrium shear modulus
u=0,74 MPa, instantaneous shift module p, =1,76 MPa, v =0,499;
rheological parameters of Rabotnov's relaxation nucleus a=-0,6; B =1,062;

x = 0,64. Amplitude of axial oscillations & = 0,008 m, frequency ® =40 s
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Thermal conductivity coefficient A=0,293 W/(m'K); the heat transfer
coefficients with the metal fittings and the environment are respectively equals
Hy =5240m", H,=40m".

In fig. 3 shows graphs of the distribution of the steady-state temperature of
self-heating with preliminary deformation (2, 3) and without pre-compression.
Analysis of the results shows that the increase in the initial deformation
significantly affects the temperature of dissipative heating.

Conclusions. An algorithm for solving the related problems of
thermoelasticity of elastomeric elements is built on the basis of the moment
scheme of finite elements. Incremental theory is used to model the processes of
deformation of structures with initial stresses.

The analysis of the obtained results shows that the proposed approach allows
to obtain satisfactory calculation results.

Considering the action of prestresses, as well as the dependence of the
physical and mechanical properties of the material makes significant
adjustments to the values of the calculated values.

REFERENCES

1. [lliushyn A. A. Fundamentals of the mathematical theory of thermoviscoelasticity /
A. A. llliushyn, B. E. Pobedria. — M.: Nauka, 1970. - 280p.

2. Pobedria B. E. Linked problems of tthermoelasticity / B. E. Pobedria // Mechanics of Polymers.
-1969.- Ne3. — P. 415 —421.

3. Kovalenko A. D. Fundamentals of thermoelasticity / 4. D. Kovalenko. — K.: Naukova dumka,
1970.—-307 p.

4. Karnaukhov V. H. Linked problems of thermoelasticity theory of plates and shells /
V. H. Karnaukhov, Y. F. Kyrychok. — K.: Naukova dumka, 1986. — 221 p.

5. Karnaukhov V. H. Linked problems of thermoviscoelaticity / V. H. Karnaukhov. — K.: Naukova
dumka, 1982. -280 p.

6. Zhuk Ya. A. Linked thermomechanical behavior of a three-layer viscoplastic beam under
harmonic loading / Ya. A. Zhuk, Y. K. Senchenkov// Applied mechanics.— 2001.— T.37, Nel. — P.
93-99.

7. Rabotnov Yu. N. Elements of hereditary mechanics of solids / Yu. N. Rabotnov. — M.: Nauka,
1977.— 384 p.

8. Kyrychevskyi V. V. Nonlinear problems of thermomechanics of constructions from weakly
compressible elastomers / V. V. Kyrychevskyi, A. S. Sakharov. — Kyev: Budivelnyk, 1992. —216 p.

9. The finite element method in the design of transport structures / A. C. Horodetskyi,
V. Y. Zavorotskyi, A. Y. Lantukh-Liashchenko, A. O. Rasskazov.— M.: Transport, 1981. —143 p.

10. Finite Element Method: Theory, Algorithms, Implementation / V. A. Tolok, V. V. Kyrychevskyi,
S. Y. Homeniuk, S. N. Hrebeniuk, D. P. Buvailo. — K.: Naukova dumka, 2003. — 316 p.

11. Novatskyi V. Dynamic problems of thermoelasticity / V. Novatskyi. —M.: Myr, 1975.— 256 p.

12. Vashizu K. Variational methods in elasticity and plasticity / K. Vashizu— M.: Myr, 1987.—542 p.

13. Dokhniak B. M. Calculation of prestressed elastomer constructions / B. M. Dokhniak,
Yu. H. Kozub // Proc. 13 Int. Symposium “Problems of tire and rubber-cord composites”. — M:
SRC NIISP. — October 14-18,2002. — P. 119-123.

14. The finite element method in the computing complex "MIRELA+" / V. V. Kyrychevskyi,
B. M. Dokhniak, Yu. H. Kozub, S. 1. Homeniuk, R. V. Kyrychevskyi, S.N. Hrebeniuk— XK.
Naukova dumka, 2005. — 402p.

15. Khoroshun L. P. Determination of the axisymmetric stress-strain state of thermosensitive shells
of revolution by the method of spline collocation / L. P.Khoroshun, S.V.Kozlov,
1. Yu. Patlashenko // Applied mechanics. — 1988.— T.24, Ne6.—P. 56 — 63.

Cmamms naoiiwna 0o pedaxyii 05.06.2020



ISSN 2410-2547 307
Omip matepianiB i Teopis cropya/Strength of Materials and Theory of Structures. 2020. Ne 104

Baoicenos B.A., Kozy6 F0.I., Conooeii 11.
TEPMOIIPYKHICTh EJACTOMEPHUX KOHCTPYKIIIN 3 MTOYATKOBUMU
HAINIPYKEHHMH

V cTarTi NpeacTaBiIeHo arOpUTM BUPIIICHHS 3B'I3aHUX 33124 TEPMOIPY)KHOCTI €l1aCTOMEPHHX
€JIEMEHTIB KOHCTPYKI[ilii HA OCHOBI MOMEHTHOI CXeMH CKIHUCHHHX €JIeMEHTIB. J[Jisi MOJCIFOBAHHS
IPOLECIB  TEPMOIPYKHOrO 1eOpMyBaHHS KOHCTPYKLIH 3 MHOYaTKOBHUMH  HAIPY)KCHHIMU
BHKOPUCTOBYEThCSI IHKpEMEHTaJIbHA Teopis AehopMoBaHOro TBepaoro tina. Ha koxHOMY Kpori
e opMyBaHHsSI BUKOHYEThCS KOPUTYBAHHS MATPHUI )KOPCTKOCTI 3@ JOMOMOIOK IHKPEMEHTAaIbHOT
FEOMETPUYHOT MATpHLi JKOPCTKOCTI. BuKopucTaHHS MNOTPiHOI ampokcHMamii MepeMilleHb,
nedopmaltiii Ta GyHKIIT 3MiHEHHST 00’ €My J103BOJISIE BpaXyBaTH CJIa0Ky CTHCIIMBICTH €1aCTOMEPIB.
KoMmoHeHTH TeH30pa HampyxkeHb 00paxoByroThbcsi 3a 3akoHoMm [lroamens-Helimana. Jlins
PO3B’sI3aHHS 3371a4i TEIUIONPOBIIHOCTI MOOYIOBAHO MATPHLIO TEIUIONPOBIAHOCTI 3 ypaxyBaHHSIM
IPAaHHYHHUX YMOB Ha ITOBEPXHI CKIHYEGHHOrO eneMeHTa. J{yisi po3B’s3aHHS 3a4adi TEPMONPYKHOCTI
BUKOPHCTaHO aJrOPUTM MOCTIZOBHUX HaO/keHb. Ha KOXHOMY erari po3B’si3Ky 0OpaxoBYHOTHCS
XapaKTePUCTHKH TEPMOHAIPYXKEHOro craHy. Ha OCHOBI OTpUMaHHMX KOMIIOHCHTIB TEH30piB
HanpykeHb Ta JedopMaliiii 00paxoBy€eTbCs IHTEHCHBHICTD JKEPEJ BHYTPIIIHBOIO TEIIOYTBOPECHHS
K OCEpeJHEHA 3a LMK/ HABAHTAXKCHHs po3cisiHa eHepris. Jlas OOYHMCICHHS JMCHIIATHBHUX
XapaKTePUCTHK B’SI3KOMPYKHOTO €JACTOMEpPa BHKOPUCTOBYIOTBCS IapaMeTpH saApa peiakcaril
PaGoTHoBa. P0o3B’s3aHHS 3a1aui TEIUIONPOBIAHOCTI 3 ypaxyBaHHAM (yHKII BHYTPIMHIX DKeper
TelUla J03BOJSIE YTOYHHTH TEMIEpaTypy HarpiBauHs Tina. Ha KOXKHOMY LHKII aJroputmy
HPOBOJHUTHCSI YTOUHCHHS 3HAYCHD (i3MKO-MEXaHIYHUX XapaKTEPUCTHK TEPMOUYTIMBOIO MaTepiaiy.
HaBeneHuil miaxiz 10 po3B’s3aHHs 3ajad TEPMOIPYXKHOCTI peaji3oBaHO B OOYHCIIOBAIBLHOMY
komiuiekei «MIPEJIA+». Ha OCHOBI pO3IJIIHYTOro MiAXOAYy OTPHMAaHi PO3B’SI3KM HHM3KH 3a]ad.
OtTpuMaHi pe3yJbTaTH 3a0BLILHO 30IraloThCst 3 PO3B’sI3KAMH IHIIMX aBTOpiB. BpaxyBanus il
HONEePEAHBOr0 HABAHTAKCHHS Ta 3aJEKHOCTI (PI3UKO-MEXaHIYHHX BJIACTHBOCTEH MaTepiaiay Bix
TEMIIEPaTypH NPUBOAUTH 10 CYTTEBUMX KOPEKTHB PO3PAXYHKOBUX BEJIMUHUH.

KuiouoBi ciioBa: MeTo/ CKiHUCHHHX €JIEMCHTIB, €IaCTOMEP, TEPMONPYKHICTb, IUCUIIATHBHUI
PO3irpiB, MOYATKOBI HATIPYKECHHSL.
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