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The paper considers parametric optimisation problems for the bar structures formulated as non-
linear programming tasks. The method of the objective function gradient projection onto the active
constraints surface with simultaneous correction of the constraints violations has been used to solve
the parametric optimisation problem. Equivalent Householder transformations of the resolving
equations of the method have been proposed. They increase numerical efficiency of the algorithm
developed based on the method under consideration. Additionally, proposed improvement for the
gradient-based method also consists of equivalent Givens transformations of the resolving equations.
They ensure acceleration of the iterative searching process in the specified cases described by the
paper due to decreasing the amount of calculations. The comparison of the optimisation results of
truss structures presented by the paper confirms the validity of the optimum solutions obtained using
proposed improvement of the gradient-based method. The efficiency of the propoced improvement
of the gradient-based method has been also confirmed taking into account the number of iterations
and absolute value of the maximum violation in the constraints.
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Introduction. Over the past 50 years, numerical optimisation and finite
element method [7] have individually made significant advances and have
together been developed to make possible the emergence of structural
optimisation as a potential design tool. In recent years, great efforts have been
also devoted to integrate optimisation procedures into the CAD facilities. With
these new developments, lots of computer packages are now able to solve
relatively complicated industrial design problems using different structural
optimisation techniques.

Applied optimum design problems for the bar structures in some cases are
formulated as parametric optimisation problems, namely as searching problems
for unknown structural parameters, whose provide an extreme value of the
specified purpose function in the feasible region defined by the specified
constraints. In this case structural optimisation performs by variation of the
structural parameters when the structural topology, cross-section types and node
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type connections of the bars, the support conditions of the bar system, as well as
loading patterns and load design values are prescribed and constants. Besides,
mathematical model of the parametric optimisation problem of the structures
includes the set of design variables, the objective function, as well as
constraints, whose reflect in general case non-linear interdependences between
them [10].

In cases if the purpose function and constraints of the mathematical model
are continuously differentiable functions, as well as the search space is smooth,
then the parametric optimization problems are successfully solved using
gradient-based non-linear methods [11]. The gradient-based methods operate
with the first derivatives or gradients only both of the objective function and
constraints. The methods are based on the iterative construction such sequence
of the approximations of the design variables that provides the convergence to
the optimum solution (optimum values of the structural parameters) [17].

Additionally, a sensitivity analysis is a useful optional feature that could be
used in scope of the numerical algorithms developed based on the gradients
methods [8].

Although many papers are published on the parametric optimization of the
structures, the development of a general computer program for the design and
optimisation of building structures according to specified design codes remains
an actual task. Therefore, in this paper, a gradient-based method is considered as
investigated object. The main research question is the development of
mathematical support and numerical algorithm to solve parametric optimisation
problems of the building structures with orientation on software implementation
in a computer-aided design system.

1. Parametric optimisation problem formulation. Let us consider a
parametric optimisation problem of a structure consists of the bar members,
which can be formulated as presented below: to find optimum values for
geometrical parameters of the structure, bar’s cross-section sizes and initial pre-
stressing forces introduced into the redundant members of the bar system,
whose provide the extreme value of the determined optimality criterion and
satisfy all load-bearing capacities and stiffness requirements. We assume, that
the structural topology, cross-section types and node type connections of the
bars, the support conditions of the bar system, as well as loading patterns and
load design values are prescribed and constants.

The formulated parametric optimisation problem can be stated as a non-
linear programming task in the following mathematical terms: to find unknown

structural parameters X ={XZ}T, l=m, providing the least value of the
determined objective function:

S = (X)) = min £(X), (1.1)
in feasible region (search space) J defined by the following system of
constraints:
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WD) =y () =01k =LN,c (1.2)

0(X)={p,(X) 0|7 =Ny +1L,N,c}; (13)
where X is the vector of the design variables (unknown structural parameters);
fs v, @, are the continuous functions of the the vector argument; X" is the
optimum solution or optimum point (the vector of optimum values of the
structural parameters); f is the optimum value of the optimum criterion

(objective function); N,. is the number of constraints-equalities t,z/,((f( ),
whose define hyperplanes of the feasible solutions; N,. is the number of

constraints-inequalities ¢, (X), whose define a feasible region in the design

space 3.

The vector of the design variables Eq. (1.1) can include as components
unknown geometrical parameters of the structure, unknown cross-sectional sizes
of the structural members, as well as unknown initial pre-stressing forces
introduced into the specified redundant members of the structure.

The specific technical-and-economic index (material weight, material cost,
construction cost etc.) or another determined indicator can be considered as the
objective function Eq. (1.1) taking into account ability to formulate it analytical

expression as a function of design variables X .

Load-bearing capacities constraints (strength and stability inequalities) for
all design sections of the structural members subjected to all design load
combinations at the ultimate limit state as well as displacements constraints
(stiffness inequalities) for the specified nodes of the bar system subjected to all
design load combinations at the serviceability limit state should be included into
the system of constraints Egs. (1.2) —(1.3). Additional requirements, whose
describe structural, technological and serviceability particularities of the
building structure under consideration, as well as constraints on the building
functional volume can be also included into the system Eqgs. (1.2) — (1.3).

2. An improved gradient-based method to solve the parametric
optimisation problem. The parametric optimisation problem stated as non-
linear programming task by Egs. (1.1) —(1.4) can be solved using a gradient-
based method. The method of objective function gradient projection onto the
active constraints surface with simultaneous correction of the constraints
violations ensures effective searching for solution of the non-linear
programming tasks occurred when optimum designing of the building structures
[5,9].

The gradient-based method operates with the first derivatives or gradients
only both of the objective function Eq. (1.1) and constraints Egs. (1.2) —(1.3).
The method is based on the iterative construction such sequence Eq. (2.1) of the
approximations of the design variables Eq. (1.4) that provides the convergence
to the optimum solution (optimum values of the structural parameters):



268 ISSN 2410-2547
Omip matepianiB i Teopis cropyx/Strength of Materials and Theory of Structures. 2020. Ne 104

X=X +AX,, 2.1)
where )?t ={XI}T, 1=1,N, is the current approximation to the optimum

solution X~ that satisfies both constraints-equalities Eq. (1.2) and constraints-
inequalities Eq. (1.3) with the extreme value of the objective function Eq. (1.1);

AX, ={AX,

. l}r, 1=1,N, , is the increment vector for the current values of the

design variables )?t (see Fig. 2.1); ¢ is the iteration’s index. Start point of the

iterative searching process X ._, can be assigned as engineering’s estimation of
the admissible design of the structure.

X,

Fig. 2.1. Step to the optimum point depending on location of the current approximation
in the N-dimension search space: graphical illustration

The active constraints only of constraints system Egs. (1.2) — (1.3) should be
considered at each iteration. Set of active constraints numbers A calculated for

the current approximation X , to the optimum solution (current design of the
structure) is determined as:

A=xuUn, K={K“

WK()?t)‘Z—g}, n:{NEC+n ‘ go,l(/\_}t)z—s}.

where & is small positive number introduced here in order to diminish the
oscillations on movement alongside of the active constraints surface.

Increment vector AX, for the current values of the design variables X, can

be determined by the following equation:
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AX, = AX! +AX/, 2.2)

where AX ' is the vector calculated subject to the condition of liquidation the

constraint’s violations; AXH' is the vector determined taking into consideration

the improvement of the objective function value. Vectors A)?HI and AX " are
directed parallel and perpendicularly accordingly to the subspace with the
vectors basis of the linear-independent constraint’s gradients, such that:
S \T o
(AXj) AX[=0. (2.3)

The values of the constraint’s violations for the current approximation X . of

the design variables are accumulated into the following vector:
v =(wK(X)Vr< €ex; ¢, (X)Vne n) .

Let introduce into further consideration set L, L < A, of the constraint’s
numbers, such that the gradients of the constraints at the current approximation
X, to the optimum solution are linear-independent.

Component AX ' is calculated from the equation presented below:

AX! =[Voli,. (24)

K gD’l

and

1 l

where [Vgo] is the matrix that consists of components , here

t=LLN,, keL, neL; [ is the column-vector that defines the design
variables increment subject to the condition of liquidation the constraint’s
violations. Vector fi, can be calculated as presented below.

In order to correct constraint’s violations V, vector AX " to a first
approximation should also satisfy Taylor’s theorem for the continuously
differentiable multivariable function in the vicinity of point )?t for each
constraint from set L , namely:

-V =[Vg] AX'. 2.5)

With substitution of Eq. (2.4) into the Eq. (2.5) we obtain the system of
equations to determine column-vector i, :

Vol [Vold, =-V. (2.6)
Component AX! is determined using the following equation:
I
X[ =&x By, =£(V - [Vold). 2.7)

where Vf is the vector of the objective function gradient in the current point
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(current approximation of the design variables) X S favf is the projection of the
objective function gradient vector onto the active constraints surface in the
current point X, ; #y is the column-vector that defines the design variable’s

increment subject to the improvement of the objective function value. Column-
vector F‘H can be calculated approximately using the least-square method by the

following equation:

[Voli ~Vf . 2.8)
or from the equation presented below:
[Vol [Vold =[Ve] v/ (2.9)

where & is the step parameter, which can be calculated subject to the desired
increment Af of the purpose function on movement along the direction of the
purpose function anti-gradient. The increment Af can be assign as 5...25%

from the current value of the objective function /(X BE

o =& (VF) vF, = — (2.10)

r——
(V7) vf
where in case of minimisation Eq. (1.1) Af and & accordingly have negative
values. The parameter £ can be also calculated using the dependency presented
below:
.

(ﬁw )r Vf’ (2.11)
that follows from the condition of attainment the desired increment of the
objective function Af on movement along the direction of the objective
function anti-gradient projection onto the active constraints surface. Step
parameter £ can be also selected as a result of numerical experiments
performed for each type of the structure individually [6, 13].

Using Egs. (2.4) and (2.7), Eq. (2.2) can be rewritten as presented below:

A%, =[Vo] i, +&(VF -[Vo] &), 2.12)
or
AX, =& Vf +[Vo](ii, — &), (2.13)
where column-vectors i, and F‘H are calculated using Eq. (2.6) and Eq. (2.8) or
Eq. (2.9).

The linear-independent constraints of the system Eqgs. (1.2) — (1.3) should be
detected when constructing the matrix of the active constraints gradients [Vgo]
used by Eq. (2.6) and Eq. (2.8) or Eq. (2.9). Selection of the linear-independent
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constraints can be performed based on the equivalent transformations of the
resolving equations of the gradient-based method using the non-degenerate
transformation matrix H, such that the sub-diagonal elements of the matrix

H[V¢] equal to zero. Besides,
H'H=I, (2.14)
H=H, x...xH, x...xH, xH,; (2.15)
where I is the unit matrix; ¢ is the total number of the linear-independent
gradients of the active constraints, H, is the transformation matrix, such that
H/H, =1, at the same time the sub-diagonal element are equal to zero in matrix

H,xH_ x..xH,xH x[Vg] for column’s numbers 1, i. Described

conditions are satisfied by the orthogonal matrix of the elementary mapping
(Householder’s transformation) [18].
Let us present here the following algorithm to form set L and to construct

matrix H[Vgo].

1.i=0, L= and [V®] =[V¢] should be assumed, where [V¢] is the
matrix that comprises from the column-gradients of all active constraints. All
columns of matrix [Vd)]o should be marked as ‘not used’ (or linear-
independent).

2.i=i+1.

3. Among all ‘not used’ columns of matrix [Vd)]l,_l, whose correspond to
the constraints-equalities Eq. (1.2), one ;™ column with extreme value of the
specified criterion should be selected (for example, the following criterion

N.‘(
l 2/ = AZ: g,i can be considered as such criterion, where g,; are the j ® column’s
components of matrix [Vd)]l,_l). At the same time all k™ columns of matrix
[V®] . for whose the following inequality ¢} <&, met, should be marked as
‘used’, here g 1is the small positive number. In case when no constraints-
equalities exist or all constraints-equalities Eq. (1.2) are marked as ‘used’, the
selection of j ™ column should be performed among all ‘not used’ columns of
matrix [Vd)]l,_l, whose correspond to the constraints-inequalities Eq. (1.3). If
(*<g, then generation of set L and matrix H[Ve] is finished.
H[Vp|=[Ve] . In case of (<& and i=1 (i.e. L=0), there is a

contradiction in the system of constraints Eq. (1.2) —(1.3). In other case,
moving to the next step performs.
4. k ™ number of the constraint, that corresponds to the j ™ column number,
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should be included into set L, L «— L+{k}.
5. Calculate [V®] =H,[V®]

: .- It is reasonable to execute the
multiplication only for ‘not used’ columns. It should be noted, when using
Householder’s transformation matrix H, is not constructed evidently [18]. At
the same time, matrix [Vd)]l, may be constructed within the ranges of matrix

[V®] . when no additional memory is needed.

i-1

6.1f i=1, then [Vo] =g, where g, is ™ column-vector of matrix

[V®] . When i>1 [Ve)]. is constructed using extension of the matrix [V ¢]

i i-1
by the column-vector ¢,. j ™ column of matrix [Vd)]l, is selected as ‘used’,
then moving to the step 2 performs.

Using Householder’s transformations described above triangular structure of

the nonzero elements of matrix H[Ve| is formed step-by-step. Besides,
Eq. (2.6) and Eq. (2.8) can be rewritten as follow:

([Vgo]T H’ )(H[Vgo])ﬁl -V, (2.16)

H[Vo]i ~HVf . (2.17)
In order to calculate column-vectors fi, and F‘H it takes only to perform

forward and backward substitutions in Eq. (2.16) and Eq. (2.17).

To accelerate the convergence of the minimisation algorithm presented
above, h™ columns should be excluded from matrix H[Vgo]. These columns
correspond to those constraints from Eq.(1.3), for whose the following
inequality satisfies:

My —Ex ey, >0. (2.18)

VE(/Z'&/Z)

Vo(i-&i2)
ﬁ% $ i)
X]

(@) (b)
Fig. 2.2. Graphical illustration for the selection of the constraints-inequalities: graphical illustration:
a— py, =&y, <05 b=y, =&, >0



ISSN 2410-2547 273
Omip matepianiB i Teopis cropya/Strength of Materials and Theory of Structures. 2020. Ne 104

Actually, when u ,—&, 1, >0 return onto the active constraints surface

from the feasible region J with simultaneous degradation of the objective
function value perform (see Fig. 2.2, b). At the same time, in case of:

My =ity <0, (2.19)
both improvement of the objective function value and return from the
inadmissible region onto the active constraints surface perform (see Fig. 2.2, a).

When excluding 4™ columns from matrix H[Vgo] corresponded to those

constraints for whose Eq. (2.12) satisfies, matrix (H[Vgo]) , with broken (non-

triangular) structure of the non-zero elements is obtained. The set L of the
linear-independent active constraints numbers transforms into the set L,

respectively. At the same time, the vector of the constraint’s violations V
reduced into the vector V,, accordingly.

7

In order to restore triangular structure of the matrix (H[Vgo]) . with zero

re

sub-diagonal elements Givens transformations (Givens rotations) [1, 18] can be
used. Givens transformations for the matrix (H[Vgo]) . consist of construction

re

h

such square matrix G, , for which corresponded wz" element of matrix

G, (H[Vgo]) , returns into zero (see Fig. 2.3) [12]. Since c+s5°=1 by

definition, so it follows:
(G
Obvious method to calculate ¢ and s for 4™ non-zero sub-diagonal
element and for ¢ ™ diagonal element is:

)G, =1. (2.20)

wz wz

c=—, §s=—; (2.21)
r r
where
ZY 4w
' 1
1
Z 1 —
v 1
1
1
1
G. (n[ve),

Fig. 2.3. Scheme for Givens rotations (non-zero elements of the matrixes are dashed)
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The Givens matrix G may be calculated similarly to the matrix H using
the following equation:

G =G, x..xG,;x...xG, xG,. (2.23)
where y is the number of the Givens transformations. So, Givens
transformations should be executed several times (with different values z and
w), while the matrix G, (H[Vg])  has no all zero sub-diagonal elements

(for example presented by Fig. 2.3, y =5).
Taking into account Givens transformations Eq. (2.16) and Eq. (2.17) to

calculate column-vectors (i, )re , and ( ﬁf)~d can be rewritten as:

(Vo] B") G'G(u[ve)) ,(a),=-V.: @24

re

G(H[Ve]) (&) ~GHVS; (2.25)

and the main resolving equation of the gradient-based method Eq. (2.12) and
Eq. (2.13) can be rewritten as presented below:

AY, =(H[Vo]) (i), +&(V/ -(H[Ve]) (&) ). @26)

or

-

AY, =£ Vi+(B[Ve]) (2, ~¢(R),). @21

Proposed improvement for the method of the objective function gradient
projection onto the active constraints surface with simultaneous correction of the
constraints violations consists of equivalent transformations of the resolving
equations using Householder transformations. The transformations with matrix
H presented by Eq. (2.24) and Eq. (2.25) of the resolving equations of the
gradient-based method Eq. (2.6) and Eq. (2.8) increase numerical efficiency of
the algorithm developed based on the gradient-based method described above.

Additionally, proposed improvement for the gradient-based method includes
equivalent transformations of the resolving equations using Givens rotations.
The transformations with matrix G presented by Eq. (2.24) and Eq. (2.25)
ensure acceleration of the iterative searching process Eq. (2.1) in case when
Eq. (2.18) takes into account due to decreasing the amount of calculations.

It should be noted, that lengths of the gradient vectors for objective function
Eq. (1.1) as well as for constraints Egs. (1.2) — (1.3) remain as they were in
scope of the proposed equivalent transformations ensuring the dependability of
the optimisation algorithm.

Determination the convergence criterion is the final question when using the
iterative searching for optimum point Eq. (2.1) described above. Taking into
consideration the geometrical content of the gradient steepest descent method,

we can assume that, at the permissible point X , the component of the increment
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vector A)?Ht for the design variables should be vanish, A)?“’ — 0, in case of

approximation to the optimum solution of the non-linear programming task
presented by Egs. (1.1) — (1.4). So, the following convergence criterion of the
iterative procedure Eq. (2.1) can be assign:

o= S8 ) < .

where ¢, is the small positive number.

Taking into consideration Eq. (2.28) let formulate the following stop criteria
in the iterative searching procedure Eq. (2.1).

Stop criterion I: in case of the objective function gradient in the current
approximation X . of the design variables is close to zero value indicating on
extreme character of the current approximation, as well as violated constraints

are absent:

-0,

S (2.29)
—e2Vf2>+g;

where 24 is the set of the violated constraints numbers,
Z:{s| y/s(/\_}t)‘>.9; gos()?t)>g};

Stop criterion 2: in case of the projection of the objective function gradient

in the current approximation X, onto the active constraints surface is close to

zero value or objective function gradient is perpendicularly to the active
constraints surface indicating impossible further improvement of the objective
function value, as well as violated constraints are absent:

2=®;

. (2.30)
—£E2p2+E;

Stop criterion 3: when in the current approximation )?t of the iterative
searching procedure (2.2) the total number of the active constraints ¢ equals to
the number of design variables N, , as well as all active constraints are ¢ -
active (both not violated constraints and those ones for whose inequality

Eq. (2.12) met):
- (R

t=Ny; (2.31)
My =&y, <0,Vf eL.

This stop criterion for the iteration process Eq. (2.1) corresponds to the case
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~ T —
when the current approximation X, =(Xf) ,1=1,N,, to the optimum

solution locates at the intersection point of the constraints (so called, vertex). In
this case, no correction of the constraints violations is needed and further
improvement of the purpose function value is not possible.

Stop criterion 4: when the purpose function values within two consecutive
iterations are the same with acceptable accuracy subject to the absence of the
violated constraints:

- a,

f(XL)=r(X)

3. Results and discussion. In order to estimate an efficiency of the new
methods or algorithms, we should perform a comparison with alternative
methods or algorithms presented by other authors using different optimisation
techniques. Criteria to implement such comparison are described, i.e. by the
papers [2, 6]. Many of them, such as robustness, amount of functions
calculations, requirements to the CPU memory, numbers of iterations etc.
cannot be used due to lack of corresponded information in the technical
literature. Therefore, an efficiency estimation of the method of objective
function gradient projection onto the active constraints surface with
simultaneous correction of the constraints violations presented above will be
based on comparison of the optimisation results obtained using proposed
improvement of the gradient-based method, as well as of the results presented
by the literature and widely used for testing. Initial data and mathematical
models of the parametric optimisation problems considered below were
assumed as the same as described in the literature.

3.1. Parametric optimisation of a three-bar truss. Optimisation of a three-
bar truss (see Fig. 3.1) has been firstly solved by Schmit L. A. [15] using a non-
linear programming method. Besides, the task has been also considered by the
authors of the paper [6].

A parametric optimisation Z*
problem was formulated as searching
for optimum cross-sectional areas b,

(2.32)

b, and b, of the truss bars providing

254 mm

the least value of the truss weight
subject to normal stresses and flexural
stability constraints, as well as
displacements and eigenvalue
constraints. Load cases for truss under
consideration are presented by Table 4[ 254 mm 4[ 254 mm 4[
3.1

Fig. 3.1. Three-bar truss
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Table 3.1
Load cases for considered truss
Load case j 1 2 3
0,.° 45 90 135
P, x10°, pound-force 40 30 20
P,, ton-force 18.144 13.608 9.072

Initial data for optimisation of the truss are as follows: unit weight of the
truss material is pg = 0.1 pound/inch® = 2.768-107° t/cm’; modulus of elasticity
is E =10’ pound/inch® = 703.066 t/cm’; allowable stresses value for the 1% and
3" truss member is o} = ¢¢ = 5000 pound/inch® = 0.3515 t/cm’; for the 2™ truss
member is o} = 2000 pound/inch’=1.4061t/cm*; non-dimensional factor used
to calculate second moment area of inertia for each truss member is f =1,
I, = Bb,; ultimate vertical z* and horizontal x“ displacements of the truss
nodes are x“ =z“ =0.005inch=0.127 mm; lower limit value for eigenvalue is
&, =1.872-10°.

The objective function can be written as presented below:

y/0=pgl(b1\/§+b2+b3\/§)—>min; (3.1)

where [ is the truss height, / =25.4 cm (see Fig. 3.1). Let formulate strength
constraints for each truss members for all load cases as follows:

/|
Vi) = ﬁ —-1<0; (3.2)

where N/ is the axial force for i " truss member subjected to ;" load case,
i= l,_3, j= 1,_3 Besides, let include to the system of constraints the inequalities
describing that the design variables should have positive values:

W, =-b <0; (3.3)

Flexural buckling constraints for all truss members can be written using
Hooke law as presented below:

(x;{ +z;{) /
7’ Bb,

where x/, z/ are linear displacements for 4™ node of the truss subjected to ;"

Visusins; = — -1<0; 3.4

load case along the directions of Ox and 0z axes respectively. Constraints on
the minimum values of the eigenvalues can be written analytically using
calculation results of the eigenvalues stability problem for truss under
consideration:
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22p lzgo[b‘;b-‘ﬁnj
2

Wy, = -1<0. (3.5)

2
LR LA
b2 b2

Let also formulate displacements constraints for 4™ truss node in the plane
x0z:

Wy, =—1-—<0; (3.6)
’ X
J
Wy, =t-1<0; 3.7)
J xa
Z 3.8
'//28+j=_1_z_a£0§ (3.3)
W,’,Hj =_a_1£0 (39)

Starting from start values of  the design variables
b° =(64.5160, 32.2580, 32.258)Tcm2 with truss weight G°=116.602 N

optimum solution b =(57.4878, 12.4482, 27.4299)Tcm2 with optimum

weight G* =91.383 N has been obtained. Comparison of the optimisation
results for three-bar truss under consideration obtained by authors of the paper
[6] and in this article is presented by Table 3.2. Step-by-step characteristics of
the iterative searching for optimum design of the three-bar truss are presented by
Table 3.3.

Table 3.2
Comparison of the optimisation results for three-bar truss
Truss member Start values of the Optimum cross-section arezas for i ™ truss
number, i design variables member, cm

Paper [6] This paper

1 64.5160 59.225688 57.487781

2 32.2580 13.935456 12.448249

3 32.2580 24.838660 27.429940

Truss weight, N 116.602 91.588438 91.382689

11 iterations have been performed. Iterative searching process for the
optimum point was stopped due to the following stop criterion: increment of the
design variables within two consecutive iterations was less than 0.0001, as well
as there were no violated constraints.
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Table 3.3
Step-by-step characteristics of the iterative searching for optimum design of the
three-bar truss

g5 Current Va'lubels Ofthez design Objective Numbers of Maximum

£ 3 variables, cm : , e

s '8 function value, | the active | violation of the

22 b, b, b, ton-force constraints constraints
0 | 64.5160 |32.2580(32.2580 | 0.01189005130 — —

1 44.5160 |22.2580 (22.2580 | 0.00820412802 15 0.358346583
2 | 60.78468 | 12.2580 | 12.2580 | 0.00812434854 1052753;7834?2’ 0.462764185
3 |40.78469 [14.85774|22.2580 | 0.00731284150 | 15, 18,22,26 | 0.422373593
4 | 55.57631 |15.86132(21.5254 | 0.00878127279 15,22 0.100763871
5 157.39339 {13.01145|26.33674| 0.00923995830 15,22 0.011887395
6 | 57.58708 [12.55355[27.23679| 0.00931651373 15,22 0.000269880
7 | 57.49673 {12.45692|27.41397| 0.00931835396 15,22 9.66743-10°
8 | 57.48847 |12.44889[27.42879| 0.00931844122 15,22 7.55468-10°
9 | 57.48783 |12.44830(27.42985| 0.00931844180 15,22 1.42876:10°
10 | 57.48778 |12.44825]27.42993| 0.00931844180 15,22 8.73750-10
11 | 57.48778 [12.44825]27.42994| 0.00931844180 15,22 6.55025-10°"

3.2. Optimisation of a ten-bar cantilever truss. A parametric optimization
problem of a ten-bar cantilever truss (see Fig. 3.2) is widely used in the
literature [3, 6, 14, 16] in order to compare different methods for solving
optimisation problems. The parametric optimisation problem is formulated as
follows: to find unknown cross-sectional areas for each truss member
b
constraints in all truss bars, node displacements constraints, as well as
constraints on the minimal cross-section areas.

The truss under consideration is undergone for two load cases (see Fig. 3.2
together with Table 3.4). Initial data for optimisation of the truss are as follows:

unit weight of the truss material is pg =0.1pound/inch’®=2.768-107° t/cm’;

(bl,)r ,i= I,TO, with weight minimisation of the truss subjected to stresses

modulus of elasticity is £ =10" pound/inch? = 703.066 t/cm*; non-dimensional
factor used to calculate second moment area of inertia for each truss member is

p=10 (Il. = ﬂbf) ; lower limit value for cross-sectional areas for all truss bars

is b =0.10inch’=0.64516 cm?; allowable stresses value for the all truss
member is o =25-10° pound/inch®=1.758 t/cm?; ultimate vertical z* and
horizontal x“ displacements of the truss nodes are x* =z =2 inch = 50.8 mm.
Start value b, =1.0 inch®=6.4516cm” was used as start approximation for
variable cross-sections areas for all bars of the truss under consideration.
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Fig. 3.2. Ten-bar cantilever truss
Table 3.4
Load cases for ten-bar cantilever truss
Node Concentrated load
Load liase number along axis 0z, C(l)ncentr:«:lte(()i loatd
number (see Fig. 3.2)|  x10° pound along axis 0z,
| 2 —-100.0 -45.35901659
4 —100.0 -45.35901659
1 50.0 22.67950830
) 2 —-150.0 -68.03852489
3 50.0 22.67950830
4 —-150.0 -68.03852489

Variable cross-section areas for each truss member b =(bl.)r, i=110,
were considered as design variables. The objective function can be written as
presented below:

W, = pgl( b +b, +b, +b, +b, +b, +x/§(b7 +by +b9+b]0)) —min; (3.10)
where [ is the truss height, / =914.4 cm (see Fig. 3.2). Constraints on lower
limit value for variable cross-sectional areas for all truss bars are written as
follows:

b,
v, =1-—<0. (3.11)
bi
Stresses constraints can be formulated as presented below:
V]
Wi =7 —1<0. (3.12)
bo

i

where N, is the axial force in the ;™ truss member. Displacement constraints



ISSN 2410-2547
Omip matepianiB i Teopis cropya/Strength of Materials and Theory of Structures. 2020. Ne 104

281

for the truss nodes are written as follows:

Wi, =—1-x, /x* <0; (3.13)
Vary =%, [x* —120; (3.14)
Wy, =—1-z, /2 <0; (3.15)
Wy, =2,/2° =150, (3.16)
where x;, z; are linear displacements of j ®truss node, j = 14.
Table 3.5

Comparison of the optimisation results for the 10-bar cantilever truss

Start values Optimal cross-section area for i ™ truss member, cm’
Bur .
number. i for ('1e51gn for the first load case for the second load case
’ variables Paper [6] This paper Paper [6] This paper
1 6.4516 193.7479996 | 197.0312484 | 152.0255024 | 151.8842240
2 6.4516 0.645160000 | 0.645160000 | 0.645160000 | 0.645160000
3 6.4516 150.1545384 | 149.6078266 | 163.0770932 | 163.1232003
4 6.4516 98.61915760 | 98.22918330 | 92.5352988 | 92.75779895
5 6.4516 0.645160000 | 0.645160000 | 0.645160000 | 0.645160000
6 6.4516 3.590315400 | 3.559530885 | 12.70836168 | 12.70787948
7 6.4516 48.18248428 | 48.02706763 | 80.0062916 | 79.87214746
8 6.4516 136.7610168 | 135.7825567 | 82.9030600 | 82.79629923
9 6.4516 139.4706888 | 138.9183389 | 130.870706 | 131.1797334
10 6.4516 0.645160000 | 0.645160000 | 0.645160000 | 0.645160000
Truss 1.8666727 | 22.51500912 | 22.51356469 | 20.80022802 | 20.80595725
weight, kKN|
Numbe'r of active 4 5 4 6
constraints
Numbers of active B 2,5,10, 13, - 2,5,10,17,
constraints 31 31,32
Modulus of the |6y, =2.041 |6y, | = 2.824
maximum violation in 0.27-107* . 0.17-107 .
the constraints x10 x10

Starting from the initial truss design with start weight G° =1.867 kN
optimal solution with optimum weight G* =22.514 kN has been obtained for
the truss subjected to the first load case. Additionally, starting from the initial
truss design with start weight G° =1.867 kN optimal solution with optimum

weight G~ =20.806 kN has been obtained for the truss subjected to the first
load case. Comparison of the optimisation results for three-bar truss under
consideration obtained by authors of the paper [6] and in this article is presented
by Table 3.5.

For both loaded cases iterative searching process for the optimum point was
stopped due to the following stop criterion: increment of the design variables
within two consecutive iterations was less than 0.0001, as well as there were no
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violated constraints.

Comparison of the optimisation results for the ten-bar cantilever truss
obtained using the proposed improved method of objective function gradient
projection onto the active constraints surface with simultaneous correction of the
constraints violations with optimisation results presented by the literature [3, 6,
14, 16] are shown in Table 3.6.

Table 3.6
Comparison of the optimisation results for the 10-bar cantilever truss
Load case 1 Load case 2
Weight, KN Stre'sses All constraints Stre'sses All constraints
constraints only constraints only
This paper 7.086663425 22.51356469 7.404064841 20.8059573
The paper [6] 7.086783276 22.51500912 7.408610546 20.8003614
The paper [16] 7.087005686 22.58284417 7.404251310 20.8039200
The paper [14] 7.086783276 22.58199901 7.404162346 20.8038755
The paper [3] 7.2149804 22.59685600 - 22.5065575

3.3. Optimisation of a 24-bar translational tower. Parametric optimization
problem for a translational tower (see Fig. 3.3) has been considered by the paper
[6]. The translation tower is
subjected to 2 load cases (see
Table 3.7). Taking into account
the symmetry of the structural
form, the vector of the design
variables has been reduced to 7
variable cross-section areas for 25
structural members of the tower
under consideration (see Table
3.8). The parametric optimization
problem is  formulated as
searching for optimum cross-

X=(x,),

sectional areas

i=1,7, of the tower structural
members, whose provide the least
weight of the tower subjected to
stresses constraints, node
displacements constraints, as well
as constraints on the minimal
cross-section areas.

Initial data for optimisation of
the tower are as follows: unit
weight of the tower material is pg = 0.1 pound/inch®=2.768 t/m*; modulus of

Fig. 3.3. Design model of the translational tower

elasticity is £ =10’ pound/inch® = 703.074 t/cm’; non-dimensional factor used
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to calculate second moment area of inertia for each tower structural member is
p=10 (Il. = ﬂbf); lower limit value for cross-sectional areas for all tower

members is A" =0.01 inch? = 0.0645 cm?; ultimate node displacements of the
tower are x“ = y* =z =0.35 inch = 8.89 mm; allowable stresses value for the

all tower member is o = +40-10° pound/inch® = +2.8122 t/cm’.

Start value 4, =1.0 inch®=6.4516 cm® was used as start approximation for
variable cross-sections areas for all members of the tower under consideration.
Dimensions of the optimisation problem were 7 design variables and 129
constraints.

Comparison of the optimisation results for the translational tower is
presented by Table 3.8. At the continuum optimum point there were 5 active
constraints: 3™ node displacement constraint of the tower along axis Ox for 1
and 2™ load cases, 3™ node displacement constraint along axis 0z for 1% load
case, 4™ node displacement constraint along axis Ox for 2" load case, as well as
4™ node displacement constraint along axis 0z for 1% load case. Internal axial
forces at the optimum design of the translational tower are shown by Table 3.9.

Table 3.7
Load cases for translational tower

Load case | Node number | Direction of the node load application
number | (see Fig. 3.3) Ox 0y 0z
1 0.2268 - -
| 2 0.2268 - -
3 0.4536 | —2.2680 4.5359
4 - —2.2680 4.5359
) 3 - —2.2680 9.0718
4 - —2.2680 -9.0718
Table 3.8
Comparison of the optimisation results for the translational tower
Design Tower structural Optimal cross-section arezas for tower
variable |members (see Fig. 3.3) members, cm -
Paper [6] This paper
4 1 0.0645 0.0939
4, 2,3,4,5 13.2103 0.2444
4, 6,7,8,9 19.3322 23.8915
A, 10, 11,12, 13 0.0645 8.6632
A 14,15, 16, 17 4.4213 5.0950
4, 18, 19, 20, 21 10.4626 1.8024
4, 22,23,24,25 17.2335 25.2070
Tower weight, t 0.2472 0.2207




284 ISSN 2410-2547
Omip matepianiB i Teopis cropyx/Strength of Materials and Theory of Structures. 2020. Ne 104

Table 3.9

Internal axial forces at the optimum design of the translational tower, ton-force
Bar Load case Bar Load case Bar Load case
No. I 2 |No. 1 2 |No'[ 2

1 —0.1433 0.00 10 | —0.0821 | —0.5387 | 18 |-0.4685| 2.5114

2 —0.3292 0.00 11 | —-0.1304 0.5387 19 |-0.5370] -2.5114

3 0.0654 0.00 12 | -3.9711 0.00 20 [ 0.3682 | 2.5114

4 —0.2108 0.00 13 2.5968 0.00 21 [0.2997 | -2.5114

5 0.1839 0.00 14 | —1.4834 | —0.4803 | 22 | 5.8160 | —3.7169

6 —7.7237 4.8443 15 1.2554 | —0.4803 | 23 |-7.6930| —3.7170

7 5.0976 4.8443 16 | —1.5765 0.4803 24 | 5.0270 | 3.7169

8 —7.4008 -4.8443 | 17 1.1623 0.4803 25 [-8.4820| 3.7169

9 5.4205 —4.8443

Iterative searching process for the optimum point was stopped due to the
following stop criterion: increment of the design variables within two

consecutive iterations was less than 1x107°, as well as there were no violated

constraints (maximum value among constraint violations was 0.049x107'%).

Conslusion. The method of the objective function gradient projection onto
the active constraints surface with simultaneous correction of the constraints
violations has been considered by the paper. Equivalent Householder
transformations of the resolving equations of the method have been proposed.
They increase numerical efficiency of the algorithm developed based on the
method under consideration.

Additionally, proposed improvement for the gradient-based method also
includes equivalent transformations (Givens rotations) of the resolving
equations. They ensure acceleration of the iterative searching process in
specified cases described by the paper due to decreasing the amount of
calculations.

Lengths of the gradient vectors for objective function, as well as for
constraints remain as they were in scope of the proposed equivalent
transformations ensuring the reliability of the optimisation algorithm.

The comparison of the optimisation results presented by the paper confirms the
validity of the optimum solutions obtained using proposed improvement of the
gradient-based method. Start values of the design variables have no influence on the
optimum solution of the non-linear problem confirming in such way accuracy and
validity of the optimum solutions obtained using the algorithm developed based on
the presented improved gradient-based method. The efficiency of the propoced
improvement of the gradient-based method has been also confirmed taking into
account the number of iterations and absolute value of the maximum violation in the
constraints. The deviations availabled in some presented results can be explained, on
the one hand, by using a numerical approach to the iterative searching with specified
accuracy (as in the optimisation of the ten-bar cantilever truss), on the other hand, by
possible existence of several local optimum points (as in the optimisation of the
translation tower).
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Ienewrxo 1. /I., FOpuenxo B. B.
MOAUPIKALISA TPAAIEHTHOI'O METOAY JIs1 PO3B’SI3KY 3AJIAY
HNAPAMETPUYHOI ONITUMI3ALI CTEP)KHEBUX KOHCTPYKIIII

VY cTaTTi po3rismaroThCs 3ahadi MapaMeTpHYHOl ONTHMI3alil CTEPKHEBUX KOHCTPYKLIH, sKi
(hopMyIIOIOThCS B TepMiHAX 3a4adi HeJliHifHOro nporpaMyBaHHs. O6’€KTOM JOCITIIKEHHS BUCTYIIAE
METO[, IO TPYHTYIOThCS Ha OOYMCICHHI IpafieHTIB (YHKLII METH Ta OOMEXEHb, a 3a1aducio
JIOCJIKEHHS — PO3po0Ka MaTeMaTHYHOrO Ta JITOPUTMIYHOrO 3abe3reueHHs Uil PO3B’ 3Ky 3a1ay
HapaMeTpUYHOl ONTHUMi3allii KOHCTPYKILIH HpH OpieHTalii Ha NPOrpaMHy peawi3alilo B CHCTEMI
aBTOMATH30BAaHOI'O [IPOCKTYBAHHSL.

Jlist po3B’sI3KY  3a/ad  [MapaMETPUYHOI ONTHMI3allil BHKOPHCTOBYETHCS METOJ IPOEKIil
rpajieHra (pyHKIlii METH Ha TIOBEPXHIO aKTHBHUX OOMEXEHb 3 OJJHOYACHOIO JIIKBIAII€I0 HEB SI30K B
oOMeXEHHsX. Y CraTTi 3alpOINOHOBAaHI CKBIBAJICHTHI IEPETBOPEHHs Xaycxojjepa s
PO3B’s3yBaJIbHUX PIBHSHb PO3JILAYBAHOTO METOLY ONTHMI3allii, sSIKi MiJBHUILYIOT 00YHCIIIOBAIBHY
e(CKTUBHICTh AJITOPUTMY, PO3POOJIEHOrO Ha OCHOBI rpajieHTHOro wmeroay. Okpim TOro
3aIPOIIOHOBAHI  €KBIBAaJICHTHI  HepeTBOpeHHs l'iBeHca i1 pO3B’S3YBAJIbHHX  PIBHSHb
PO3TJISAYBAHOTO METOAY, SIKi JUIsi BU3HAYCHUX BHUIAJKIB, O0YMOBJICHHX Yy CTAaTTi, NPUILBHIIIYIOTH
iTepaLiiHKIl TIPOLEC MOIIYKY ONTHMAJIBHOIO PO3B’ 3Ky BHACIILOK CKOPOUYCHHS 00CIrY O0UHCICHb.
JI0BXKMHH BEKTOpIB rpaieHTIB (YHKLIl MeTH Ta OOMEXKEHb MATEMATHYHOI MOJEII 3aIHINAIOTHCS
HE3MIHHUMH IIpH 3aIpPONOHOBAHHMX EKBIBAJICHTHHX IEPETBOPEHHSX, 10 3abe3nedye HaaiiHICTH
AITOPUTMY ONTHMI3aLii.

ITopiBHSAHHS Pe3yJIbTATIB ONTUMI3AIIHUX PO3PAXyHKIB CTEP)KHEBHX CHUCTEM, HPEICTABICHE Y
CTaTTi, MIATBEPKYE IOCTOBIPHICTH ONTHMAIBHUX PO3B’SI3KIB, OTPHUMAHHX 3 BHUKOPHCTAHHSIM
3anporoHoBaHol Moaudikauii rpaxieHTHOr0 Merony. EdexTuBHicTs 3anponoHoBanoi Mogudikarii
IpaieHTHOrO METOJY ONTHMI3allii, 0 PO3rIISIAE€THCS, TAKOXK IMiATBEPIKYETHCS KIIBKICTIO iTeparii
Ta aOCOJMIOTHUM 3HAYCHHSM MaKCHMAaJbHOI HEB SI3KH B OOMEKEHHSIX.

KiarouoBi cjoBa: mnapaMerpuyHa ONTHMI3allis, 3ajada HEIIHIHHONO MpPOrpaMyBaHHs,
rpaieHTHUN METO/I, CTEeP)KHEBA CUCTEMa, METO/] CKIHUCHUX EJIEMEHTIB

Peleshko 1. D., Yurchenko V. V.
AN IMPROVED GRADIENT-BASED METHOD TO SOLVE PARAMETRIC
OPTIMISATION PROBLEMS OF THE BAR STRUCTURES

The paper considers parametric optimisation problems for the bar structures formulated as non-
linear programming tasks. In the paper a gradient-based method is considered as investigated object.
The main research question is the development of mathematical support and numerical algorithm to
solve parametric optimisation problems of the building structures with orientation on software
implementation in a computer-aided design system.

The method of the objective function gradient projection onto the active constraints surface with
simultaneous correction of the constraints violations has been used to solve the parametric
optimisation problem. Equivalent Householder transformations of the resolving equations of the
method have been proposed by the paper. They increase numerical efficiency of the algorithm
developed based on the method under consideration. Additionally, proposed improvement for the
gradient-based method also consists of equivalent Givens transformations of the resolving equations.
They ensure acceleration of the iterative searching process in the specified cases described by the
paper due to decreasing the amount of calculations. Lengths of the gradient vectors for objective
function, as well as for constraints remain as they were in scope of the proposed equivalent
transformations ensuring the reliability of the optimisation algorithm.

The comparison of the optimisation results of truss structures presented by the paper confirms
the validity of the optimum solutions obtained using proposed improvement of the gradient-based
method. Start values of the design variables have no influence on the optimum solution of the non-
linear problem confirming in such way accuracy and validity of the optimum solutions obtained
using the algorithm developed based on the presented improved gradient-based method. The
efficiency of the propoced improvement of the gradient-based method has been also confirmed
taking into account the number of iterations and absolute value of the maximum violation in the
constraints.

Keywords: bar system, parametric optimisation, non-linear programming task, gradient-based
method, finite-element method
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Ilenewxo U. /I., FOpuenxo B. B.
VIYYIIEHHBIA TPAIUEHTHBIA METO/ 1J1S PEIUEHUS 3AJIAY
HNAPAMETPUYECKOM ONITUMU3ALIAA CTEPKHEBBIX KOHCTPYKIMIA

B cratee paccMmatpuBarOTCA  3aJayd  I1apaMETPUUYECKOH  ONTHMH3ALUU  CTEP)KHEBBIX
KOHCTPYKIHH, GOPMYJIMpYEMbIe B TEPMUHAX 3a/la4d HEJIMHEHHOro mporpaMmmupoBanus. O0beKTOM
HCCIICIOBAHMUSI BBICTYIIAeT METOJ, 0a3HpYyIOIHIACS Ha BBIYMCICHHH I'PAAHECHTOB (DYHKUMH LEIH U
OrpaHMYEHMH, a 3aJaueldl  MCCIeoBaHMA  CIYXKHMT  pa3padoTKa  MaTeMaTU4ecKoro |
AITOPUTMHYECKOT0  OOeCmedeHns] A1 peLIeHHs] 3ajad  [apaMeTPUUYEecKOd  ONTHMH3ALHU
KOHCTPYKLMH IIPY OPUEHTALMK Ha NPOrpaMMHYI0 PEaM3aLii0 B CUCTEME aBTOMaTH3MPOBAHHOIO
IPOCKTHPOBAHUSL.

HJ’IS{ peeHus  3amayd l'lapaMeTpl/l‘-leCKOﬁ ONTUMHU3ALUU HUCHOJB3YECTCA METOL MNPOCKUHUU
rpaguc€Hra d)yHKLll/ll/l OEJIA Ha IOBCPXHOCTb AKTUBHBIX OFpaHl/l‘-leHl/lﬁ C OLlHOBpeMCHHOﬁ
HMKBH}lauMeﬁ HEBSA30K B Or'paHUYCHUAX. B CTaTh€ MNPEATIOXKEHBI JKBUBAJICHTHBIC npeoﬁpaSOBaHm{
Xaycxongepa Uil paspellaloliMX ypPaBHEHUH paccMaTpUBaeMOro MeEToJa  ONTHMHU3AlLlMY,
HOBBIIAIOLINE YHCICHHYIO d()()EKTUBHOCTD aNropuT™Ma, pa3paboTaHHOr0 Ha OCHOBE I'PAJANEHTHOIO
Mmeroza. Kpome Toro, npeuioxeHsl 3KBUBaJICHTHbIE NpeodpazoBanus ['MBeHCa 1l pa3pelaroInx
YPaBHEHUH paccMaTpUBaEeMOro METO/a, 00ECIeUNBAIOIIME B ONPEIEIEHHBIX CIIy4asiX, OrOBOPEHHBIX
B CTaTbe, YCKOPEHHE MTEPALMOHHOrO IpOLlecca IOMCKA ONTHUMAJIbHOIO PEIIEHHs BCIEACTBHE
yMeHbLICHNS] 00beMa BbIYUCICHU. JJIMHBI BEKTOPOB I'PAANCHTOB (GYHKIMH LIEIH M OrPaHMYCHUIH
MaTeMaTl/l“leCKOi;l MOJCJIN OCTarTCA HEU3MECHHbBIMH npu NPEATIOKEHHBIX 3KBHUBAJICHTHBIX
1peoOpa3oBaHMsIX, YTO 00ECIICINBACT HAASKHOCTD ONTHMH3ALMOHHOT O AT OPUTMA.

CpaBHeHl/le PE3YJIbTAaTOB ONITUMHU3ALMOHHBIX PACYE€TOB CTECPKHEBBIX CUCTEM, NPEIACTABJICHHBIX
B CTAaTh€, MOABEPKIAACT NOCTOBEPHOCTb OITUMAJIBHBIX pemeﬂnﬁ, INOJIy4€HHBIX C HCIIOJIb30BaHUE
HPEATIOKEHHOTO YIyqIICHUs] TPAANEHTHOr0 MeToAa. DPPEKTHBHOCTD NPEAIOKEHHOIO YIydIICHHs
paccMaTpuBaeMOro MeETOJa ONTUMU3ALMU TAKXKE IOATBEPXKIACTCS KOJIMYECTBOM HTEpaluidl M
a0COJIIOTHIM 3HAYCHHEM MaKCUMaJIbHOM HEBS3KH B O'PAHHYCHUSIX.

KirodeBble c1oBa: cTepKHEBas KOHCTPYKLHMS, apaMeTpuyeckas ONTHMH3ALUs, HeJIMHEHHOe
nporpaMMHUpOBaHUE, Fpa}ll/leHTHblﬁ METO/, METOJI KOHCYHBIX 3JICMCHTOB

YK 519.853, 624.04
Ilenewxo 1. /., IOpuenxo B. B. Moaugikauis rpagieHTHOro MeToay /IJsi Po3B’sI3Ky 3aaa4d
napaMeTpU4HOI onTHUMi3amii cTep:KHeBUX KOHCTPyKWiil / Omip MarepianiB i Teopis crmopyn:
Hayk.-Tex. 30ipH. — K.: KHYBA, 2020. — Bun. 104. — C. 265-288.

Y emammi pozenadaiomuvcs 3a0aui napamempuynoi onmumizayii cmepoicHesux KOHCMpYKYil,
KL (PopMYIOIOMbCSL 6 MEPMIHAX 3a0ayi HeniHiliHo20 npozpamysanns. s po3e’s3ky 3adau
napamempuuHoi onmumizayii GUKOPUCMOBYEMbCL MemMo0 npoekyii epadienma Qyukyii memu Ha
NOBEPXHIO AKMUBHUX 0OMEMNCeHb 3 0OHOUACHOIO NIKGIOayiclo Hed 830K 6 oOmedxcennsx. Y cmammi
3anpononosami  exeiganeHmHi nepemeopenns Xaycxonoepa Onsi  pO36 SA3VEANbHUX  PIBHAHb
PO321S0Y6AH020  MemoOdy — onmumizayii, sKi niOSUWYIOMb  00YUCTIOBANbHY  eeKmueHicmy
aneopummy, pospobreHoeo Ha OCHOSI epadichmnozo memody. OKpiM mo2o 3anpononoeami
ekgieanenmni nepemeopenns lisenca Onsi po36’si3y8aNbHUX PIiGHAHb PO32NA0YEAHO20 MEmOOY, AKI
051 BUBHAYEHUX BUNAOKIB, OOYMOGIEHUX Y CINAMINI, NPUMEUOULYIONb TMePayiiHuil npoyec NOUWyKy
ONMUMANLHO20 DPO38SI3KY 6HACTIOOK CKOpouenHs obcsagy obuucaenv. Ilopiensanna pesynomamie
ONMUMI3AYIHUX PO3PAXYHKIE CMEPIHCHeSUX CUCMeM, Npeocmasiene y Cmammi, niomeeporiCcye
0oCcmogipHicmb  ONMUMATGHUX — PO36 SI3KI6, OMPUMAHUX 3 GUKOPUCMAHHAM  3ANPONOHOBAHOI
MoOuikayii 2padieHmno20 memooy.
In. 6. Tabx. 9. bi6mior. 18 Ha3zs.

UDC 519.853, 624.04
Peleshko I. D., Yurchenko V. V. An improved gradient-based method to solve parametric
optimisation problems of the bar structures // Strength of Materials and Theory of Structures:
Scientific-and-technical collected articles — Kyiv: KNUBA, 2020. — Issue 104. — P. 265-288.

The paper considers parametric optimisation problems for the bar structures formulated as
non-linear programming tasks. The method of the objective function gradient projection onto the
active constraints surface with simultaneous correction of the constraints violations has been used
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to solve the parametric optimisation problem. Equivalent Householder transformations of the
resolving equations of the method have been proposed by the paper. They increase numerical
efficiency of the algorithm developed based on the method under consideration. Additionally,
proposed improvement for the gradient-based method also consists of equivalent Givens
transformations of the resolving equations. They ensure acceleration of the iterative searching
process in the specified cases described by the paper due to decreasing the amount of calculations.
The comparison of the optimisation results of truss structures presented by the paper confirms the
validity of the optimum solutions obtained using proposed improvement of the gradient-based
method.

Figs. 6. Tabs. 9. Refs. 18.

VK 519.853, 624.04

Ilenewxo U. /., FOpuenxo B. B. Yay4llleHHbIH TpPagueHTHBIH MeTOJ IJsl pelieHHs] 3aJa4
napamMeTpU4ecKoil ONTUMHM3ALUU CTePKHeBbIX KOHCTPYKUMiA / ConpoTHBIIEHHE MAaTEPUAIIOB U
TEOpHs COOPYKeHHil: Hayd.- Tex. coopH. — K.: KHYCA, 2020. — Bein. 104. — C. 265-288.

B cmamve paccmampusaiomca  3a0avu  napamempuieckou ONMuMusayuu  CMmepi*CHesbixX
KOHCMPYKYUU, (hopmyaupyemvlie 6 MepMuHax 3a0ayu HeIUHEUHO20 Npocpammuposanus. s
pewenuss maxkux 3a0ay UCHOIb3Yencs Memoo NPpoeKyuu 2paouenma GYHKYuY yeiu Ha nogepxXHoCnG
AKMUBHBIX 0SPAHUYEHUL ¢ 0OHOBPEMEHHOU uUKeudayuel Heesi30K 6 ozpanudenusx. Ilpednooicennvl
aKeusanenmmuule npeobpasosanus Xaycxondepa o paspemaiomux ypasHeHutl paccmampugaemozo
Memooa — onmumuzayuu, — obecnewugalowjue  HUCIEHHYIO  dpdexmusnocmy  aneopumma,
paspabomanno2o Ha ocHoge 2paduenmnozo memooda. Kpome moeo, npednodicenvi Ixeuganrenmmvle
npeobpasosanusi  Tusenca Onsi  paspewlaiowux — ypagHenull  paccMampueéaemozo  Memood,
obecneuugaiowue 8 ONPeOeeHHbIX CAYUAsX, 02060PEHHbIX 6 CMAmbve, YCKOPEHUue umepayuoHHo20
npoyecca NOUCKA ONMUMAILHO20 PpeuleHuss B8Cle0Cmeue YMeHbUeHUs 00bemMa BblNUCTeHU.
CpasHenue pe3yibmamos onMUMU3AYUOHHBIX PACYEMO6 CINEPHCHEBLIX CUCIEM, NPEeOCMABIEHHbIX 6
cmambve, noosepxicoaenm 00CMOBEPHOCHL ONMUMATLHBIX PeuleHUll, NOAYYeHHbIX ¢ UCNOIb3068aAHUE
npeonodCeHHO20 YAYUUeHUsl 2PAOUCHMHO20 MeMOoOd.

Wn. 6. Taba. 9. bubauor. 18 Ha3s.
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