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Introduction. A number of responsible structures elements, which are
prismatic bodies, are undergoing a significant shaping in the process of
manufacturing and operation, which often take place at high temperatures,
which leads to changes in the physical and mechanical characteristics of the
material and the development of various types of deformations. Due to the
possibility of simultaneous occurrence of plasticity and creep deformations
caused both of the presence of force load and external temperature influences,
determining the bearing capacity of these objects requires the solution of the
problems of thermo elastoplasticity. The solution authenticity of such problems
of the deformable body mechanics depends essentially on the adequacy of the
physical relations used to the considered processes of the material deformation,
in particular taking into account the presence of large deformations.

The purpose of this work is to select adequately the basic relations of
geometrically nonlinear problems of thermo elasto-plasticity for prismatic bodies.

Initial relations for the problems of the theory of elasticity, plasticity
and creep. Consider a curvilinear prismatic body of complex shape (Fig. 1)
with variable geometric and physical characteristics in the basic coordinate

system z' . It is used to describe boundary conditions, external influences, and
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object configuration. Fig. 1 shows also a local curvilinear coordinate system x'

that is related to its geometry.

The transformation tensor that
determines the relationship between
the local and basic coordinate systems
is known at each point in the body:

2
2= oz (1)
o ox!

The indexes indices by Latin

z letters taking values 1, 2, 3, and taking
the values 1, 2 when indices in Greek
. letters hereinafter.
z The covariant components of the
2 metric tensor of the local coordinate

system are represented by the
Fig. 1. Curvilinear prismatic body of complex ~ covariant components of the metric
shape tensor of the basic coordinate system

according to formula:
gij = Z,’? Z,njgmn . (2)
It is most advisable to use a Cartesian coordinate system as a basis for the

study of prismatic bodies. Three components of the metric tensor are non-zero
in this case:

g =L gy =1 gyy=1. 3)
Then the covariance components of the metric tensor of the local coordinate
system are determined by the formula:
g = Z”? Z’"j . @)
We find the covariance components of the metric tensor of the local
coordinate system using the following relation:

Ag")
g

g’ = )

where A(g”) is the algebraic complement of the each element in a matrix
composed of the covariance components of the metric tensor, g =det(g;) - the

determinant of that matrix.
The relation for determining the deformation components due to the
displacements in the local coordinate system have the form [20]:

. Ou;
81] =%(§_u;+a_iJ_ukr§’ (6)
X X

where 1"1-;? - the second kind Christoffel symbols.
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In the basis Cartesian coordinate system all the Christoffel symbols are equal
to zero and the displacements in the local and base coordinate systems are
related by the ratios:

u, = umZ",Z . @)

On the basis of formulas (6) and (7) we obtain the expression of the

components of the strain tensor in the local coordinate system by displacements

in the basic one:
1 , \

€5 = 5( “mfiz,n;' + umijz”j-“ ) . (8)

In problems of thermoelasticity the components of the complete deformation
tensor are equal to amount of elastic and temperature components:

de; =def +de], 9)

i
where eiJT- =arTg;, ar - coefficient of linear expansion of material, 7 — an

increase of temperature in the investigated point of the body relative to its
original state.

Components of the stress tensor under elastic loading connected through the
components of the strain tensor in accordance with Hooke's law:

ol =cimee (10)
or subject to (7)
ol =ci (s, —eh). (11)

The components of the elasticity tensor constant for isotropic bodies are
found from the relations:

M =2g"g" + u(g"g"” +g"eg") (12)
where are the Lame coefficients 4 and u are determined by the Poisson's ratio
V= v(zi ',T) and material elasticity modulus (Young's modulus) E =E(z' ',T) ,
that depend on the temperature 7:

P LA S (13)
(1-2v)(1+v) 2(1+v)

To describe the process of deformation beyond the elasticity of a material
whose physical properties depend on temperature, we use the theory of plastic
flow [1].

It is supposed that the material is homogeneous and isotropic in the initial
state, plastic non-compressed and change of material’s volume is linear-elastic:

P _ _ e
dgl-j =0, dgl-j = dgl-j . (14)
The increment of complete deformation de;; is equal to amount of elastic

deformation deg!

. T . ..
;7 » temperature deformation de;; and deformation of plasticity

p.
dgij.
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de; =dej +def + dsiJT-. (15)

Elastic deformations are related to the stress of the Hooke law (10). The area
of elastic deformation is limited in the space of stresses by the yield surface:

£, 2.T)=0. (16)

In accordance with the hypothesis of isotropic hardening under the
conditions of Mises' fluidity, the equations of the yield surface are as follows:

fp:%sijsl]—ff(%’T)zo’ (17)

where 7,(x,T) - yield limit under pure shear, y - Odquist’s strengthening
parameter:

)(=J %delfdsg . (18)

The components of the stress deviator included in expression (17) are
determined by the formula:

sV =¥ —%5mncrm”gij. (19)

Stress deviator is associated with an increase in plastic deformation in
accordance with the associated law of plastic yield:

of,

T
o0sY

def =2 =A,S - (20)
In case of creep deformations presence the equations of state are adopted in

accordance with the theory of strengthening [8]. It is assumed that the complete

increments of deformation are defined as the sum of four components:

de; =def +de] +del +def. 1)
The creep surface equation looks like:
£ =%s,.jsl'f—r§(y/,T,gi)=o. (22)

The creep limit is determined by the formula:
1

PL 7
7. = {—l(u/)ﬁ } : (23)
o
where a, f, y are temperature dependent constants which characterized a creep
properties of material; y - strengthening parameter:
—J . %dg;dgéj ) (24)
y

The increase of creep deformations is found by the components of the stress
deviator:

0t _js (25)

s

dej =2,
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Determination of deformations in geometrically nonlinear problems. We
will still use [4,5, 6] the basic Cartesian coordinate system Z" when
considering spatial objects in geometrically nonlinear formulation and the local
coordinate system x', provided that it is "frozen" into the medium and
deformed with it. The positions of each particle of body at any time are
determined by the radius vector:

F=r(Z',1). (26)

We suppose that the reference initial configuration is formed by vectors 7, at
time ¢,, topical — vector 7, =R at time ¢. We also introduce the reference

variable configuration that corresponds to the time 7 which is close enough to ¢ :

t=1+At. (27) e ;
We denote the metric tensors of a

~3 G X2
these states £, §, & respectively x N
(Fig. 2). Sy R x*?

The increase of time ¢ chosen X1 3 2

in a such way that during the g r
transition from the reference
variable configuration to the actual r
metric tensor components were 23" z?
corresponded to the ratio:

A& — &_ §’ AGij«Gij . (28) Fig. 2. Three configurations of coordinate system

The covariance components of metric tensors of configurations being
entered into consideration are calculated similarly (4) through the
transformation components tensor of the respective configurations.

To identify the components A& we will write an expression for the radius
vector of a point in the

current configuration R,
as the sum of the vector

7-=7 in the variable

ul'

reference configuration and
displacement vector u A(F' 2
(Fig. 3): ~
R=F+u, (29) N 7

or, using of index notation:
z" =Z" +u"™ . (30)

The components of the
transformation tensor that

determine the relatlonshl.p Fig. 3. Changing the position of a point according to the
between the local and basic entered reference variable configuration

zZ2

7 2

72
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coordinate systems in the current configuration are determined by the formula:
Z7 =Z7 +ul} . (31)
The covariant components of the metric tensor of the actual configuration
are represented using of formula (4):

G, =27" . (32)
Turning (32) and taking into account (31), we obtain:
Gy =Z27"Z"7 +Z7u"y +ull Z7 +ullu’; = g; +AGy, (33)
where
_om' m' m' m' m'
AG; =Z5u'jui +uju’; . (34)
Counter-variant components AG;; are determined by the condition:
G'G; =6 (35)
or
(8" +AG)(g; +AG;) -8 =0. (36)
Neglecting small increments of AG”AG ; value, we get:
AG'g; +2"AG; =0, (37)
where
ik __~if ~Ik
AG" =-g"AG ;2" . (38)

We write the expressions for the strain tensor in the current configuration
using the Finger measure E [2, 3]:
£=%(F—(§). (39)

Counter-variant components of the Finger measure F? is equal to the
corresponding components of the metric tensor g’ of reference initial

configuration.
We present the counter-variant components of the deformation tensor in the
current configuration as follows:

e/ =2 (F -G =2(g" -G, (40)
Using a variable reference configuration, we represent (40) as amount of:
.9’7=%(gy—§”+§U—Gy)=§y+A£y. (41)

The components of the strain tensor £ in the variable reference

configuration relative to the initial reference one are indicated there as £7 :

& =2("-2"), (42)
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and components of the strain tensor in the transition from the variable reference
to the actual configuration are indicated through Ag” :

AgY =%(§"f -Gy, (43)

Counter-variant components of the deformation increment during transition
from the reference variable to the actual configuration, taking into account (38),
represented by the relations:

457 = (g7 ~G1) =287 - &' - AGT) =~ " 4G, &7, (44)
and the covariance components are:
.o PER 1
Agkl =A€UGiijl zAgljgjl =EAle (45)
Using expression (34), we write the covariance components of the strain
tensor in the current configuration through displacements:
Ag; = %(Z”l-” w's +u ZU +uuli ). (46)
On the other hand, the increment of the strain tensor A& can be expressed as
the product of the strain rate tensor at Az .

AE=E" At . (47)
The Aldroid derivative of the tensor £ we represent with the relation [7]:
£ =£-VITE. (48)

Taking into account (39) and equivalence to zero of the operator vé=o0,
we get:

& =%[(ﬁ—5)—V§T(ﬁ—(§)—(F—(§)V§] =%[V§T}€+ v -
_6-vITEivITE-Fvi+ &wﬂ = —%(& vé) = %%. (49)

Thenat At >0 :

Af= 186 5, =146, (50)
2 ot 2

which is equivalent to component form (45).

Conclusion. The initial relations for physically and geometrically nonlinear
problems of deformation process for space prismatic bodies being formulated
above. It will allow to create new types of finite elements and to obtain
corresponding ratios for calculating the coefficients of stiffness matrices and
nodal reactions for a new class of problems.
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MAIN RELATIONSHIPS FOR PHYSICALLY AND GEOMETRICALLY NONLINEAR
PROBLEMS OF DEFORMATION OF PRIMATIC BODIES

A number of responsible structures elements, which are prismatic bodies, are undergoing a
significant shaping in the process of manufacturing and operation, which often take place at high
temperatures, which leads to changes in the physical and mechanical characteristics of the material
and the development of various types of deformations. The solution authenticity of such problems of
the deformable body mechanics depends essentially on the adequacy of the physical relations used
to the considered processes of the material deformation, in particular taking into account the
presence of large deformations.

The initial relations of thermo elastic-plastic deformation of prismatic bodies are given in the
paper. A Cartesian coordinate system used as a basis for the study of prismatic bodies. The relation
for determining the deformation components through displacement values in the local coordinate
system are formulated. The components of the complete thermo elastic-plastic and creep
deformation tensor are taken as amount of appropriate deformation components. The plastic
deformation described with associated law of plastic yield, a creep deformation — in accordance with
the theory of strengthening The basic concepts, indifference of deformation tensors, with the
condition of energy conjunction in description of the shaping process are laid out on the basis of
classical work.
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