Application of stiffness rings for improvement of operating reliability of the tank with shape imperfection




finite element method, operating reliability, stability, tank, failure-free region, thin-walled shell, shape imperfection, combined load, stiffness ring


Strengthening of the tank thin wall taking into account real shape imperfections at the joint action of axial compression and surface pressure was offered with the stiffness rings. An efficiency of the use of two stiffness rings for improvement of operating reliability in the tank stability was evaluated. The numerical technique for studying the stability of thin imperfect shells with application of the program complex of finite element analysis procedures was presented. The computer model of the tank with wall real imperfections were constructed in the form of a thin cylindrical shell using spline-curves in a cylindrical coordinate system.The tank stability problem under separate and joint action of surface pressure and axial compression was solved by the Lancosh method in linear formulation and as a nonlinear static problem by the Newton-Raphson method. Precritical and postcritical behavior of the shell was considered. The influence of stiffness rings on the critical values of the combined load and the stress-strain state of the tank at different loading steps were investigated. The region of the tank failure-free work, which has the graphical presentation, confirmed the improvement of the tank wall stability due to the use of stiffness rings, especially in the area of surface pressure action.

Author Biography

Olga Lukіanchenko, Kyiv National University of Construction and Architecture

Candidate of technical sciences, senior researcher, senior researcher of the Research Institute of Structural Mechanics


Augusti G., Baratta A., Kashiati F. Veroyatnostnyie metodyi v stroitelnom proektirovanii (Probabilistic methods in construction design) / Per. s angl. – M.: Stroyizdat, 1988. – 584 s.

Bolotin V.V. Metodyi teorii veroyatnostey i teorii nadezhnosti v raschetah sooruzheniy (Methods of probability theory and reliability theory in calculations of structures). – M.: Stroyizdat, 1982. – 351 s.

Gavrilenko G. D. Nesuschaya sposobnost nesovershennyih obolochek (Bearing capacity of imperfect shells). – In-t mehaniki im. S.P.Timoshenko NAN Ukrainyi, 2007. – 294 c.

ДБН В.1.2-2:2006. Система забезпечення надійності та безпеки будівельних об’єктів. Навантаження і впливи. Норми проектування. – К.: Мінбуд України, 2007. - 60 с.

Donnell L.G., Van K. Vliyanie nepravilnostey v forme na ustoychivost sterzhney i tonkostennyih tsilindrov pri osevom szhatii (Influence of irregularities in the form on the stability of rods and thin-walled cylinders under axial compression) // Mehanika. Sb. perev. i obz. inostr. period. lit-ryi. – 1951. – №408, S.91 – 107.

Koyter V.T. Ustoychivost i zakriticheskoe povedenie uprugih sistem (Stability and supercritical behavior of elastic systems) // Mehanika: Sb. perev. inostr. statey. – 1960. – №5, S.99 – 110.

Lukianchenko O.O., Kostina O.V., Haran I.H. Modeliuvannia pochatkovykh nedoskonalostei tsylindrychnoi obolonky pry doslidzhenni yii stiikosti pry dii kombinovanoho navantazhennia (Modeling of cylindrical shell initial imperfections in the investigation of its stability under the action of combined load) // Opir materialiv ta teoriia sporud. − K.: KNUBA, 2009, Vyp. 84. C. 97-103.

Perelmuter A.V. Izbrannyie problemyi nadezhnosti i bezopasnosti stroitelnyih konstruktsiy (Selected problems of reliability and safety of building structures). 3-e izd. – Moskva: Izd-vo Assotsiatsii stroitelnyih vuzov, 2007. – 256 s.

Timoshenko S.P. Ustoychivost sterzhney, plastin i obolochek (Stability of rods, plates and shells) – M.: Nauka, 1971. – 807 s.

Shimkovich D.G. Raschet konstruktsiy v MSC/NASTRAN for Windows (Calculation of structures in MSC / NASTRAN for Windows). – M.: DMK Press, 2001.– 448 s.

Bazhenov V., Perelmuter V. and Vorona Yu. Structural mechanics and theory of structures. – History essays LAP LAMBERT Academic Publishing, 2017. – 580 p.

Bazhenov V.A., Lukyanchenko O.O., Kostina O.V., Gerashchenko O.V. Probabilistic Approach to Determination of Reliability of an Imperfect Supporting Shell // Strength of Materials. − 2014, № 46 (4). − P. 567-574.

Gotsulyak E.A., Luk’yanchenko O.А., Kostina E.V., Garan I.G. Geometrically nonlinear finite-element models for thin shells with geometric imperfections // International Applied Mechanics. − 2011, № 47(3). − P. 302-312.

Lukianchenko O.O., Kostina O.V. The finite Element Method in Problems of the Thin Shells Theory. − LAP LAMBERT Academic Publishing, 2019. − 134 p.

Zienkiewicz O.C. and Taylor R.L. The Finite Element Method. 5th edition.  Butterworth-Heinemann, 2000.