Mathematical model of the dynamics change departure of the jib system manipulator with the simultaneous movement of its links

Authors

DOI:

https://doi.org/10.32347/2410-2547.2020.104.175-190

Keywords:

mathematical model, varying the radius, combination of movements, manipulator, Lagrange equations of the second kind, dynamic loads, load oscillations

Abstract

In order to increase the productivity and reliability of the manipulator according to the normative and technical documentation, which regulates the safe operation of the manipulators, it is allowed to combine movements with the simultaneous movement of several elements of the boom system. As a result, the paper methodology reviewed for constructing a mathematical model in the plane of the departure change of the boom system of a manipulator with a load. The mathematical model is constructed from the calculation of three simultaneous movements, namely, the simultaneous movement of the first jib section, the second jib section, the telescopic jib section and the oscillation of the cargo. The functions of changing the kinematic and dynamic characteristics of the boom system with the simultaneous movement of its links are calculated. The construction of a mathematical model is carried out using Lagrange equations of the second kind. Moreover, the generalized coordinates of the manipulator model are taken as the angular coordinates of the position of the links of the boom system and the angular deviation from the vertical of the cargo. And the mechanical characteristics of the hydraulic drive are presented in the form of square dependencies between the acting forces and the speeds of movement of the hydraulic cylinder rods. The control of the drive elements is presented in the form of equations of the flow rate of the working fluid with a change in the area of the flow cross-section of the hydraulic distributor according to a linear law. As a result, the equation of motion of the manipulator is obtained, taking into account the influence of the inertial component of each link of the boom system and the influence of cargo oscillations on the dynamic loads of metalware elements and hydraulic drive elements. The developed mathematical model allows one to theoretically determine the effect of simultaneous movement of the first jib section, the second jib section and the telescopic jib section on cargo oscillation, as well as the effect of cargo oscillation on dynamic loads that occur in the boom system and manipulator hydraulic drive elements.

Author Biographies

Viatcheslav Loveikin, National University of Life and Environmental Sciences of Ukraine

Doctor of Technical Sciences, Professor, Head of department of machines and equipment design

Yuriy Romasevych, National University of Life and Environmental Sciences of Ukraine

Doctor of Technical Sciences, Associate Professor, Professor of department of machines and equipment design

Olexandr Spodoba, National University of Life and Environmental Sciences of Ukraine

Post-graduate student of department of machines and equipment design

Andriy Loveikin, Taras Shevchenko National University of Kyiv

Candidate of Physical and Mathematical Sciences, Associate Professor, Associate Professor of mathematical physics department

Kostiantyn Pochka, Kyiv National University of Construction and Architecture

Doctor of Technical Sciences, Associate Professor, Head of Department of Professional Education

References

Bashkirov V.S. O dinamicheskih nagruzkah, voznikayushih v gidroprivodah i metalokonstrukciyah gidromehanicheskih manipulyatorov (On dynamic loads arising in hydraulic drives and metal structures of hydromechanical manipulators) / V.S. Bashkirov, Yu.N. Dudkov, V.E. Kireev, P.B.Germanovich // Vsb.: Gidroprivod i sistemy upravleniya stroitelnyh, tyagovyh i dorozhnyh mashin. Omsk, 1980. – S. 50-55.

Bashkova N.V. Mestnye napryazheniya v teleskopicheskoj strele (Local stresses in telescopic jib) / N.V.Bashkova // Stroitelnye i dorozhnye mashiny. – M.: 1977. – №7 – S. 19 – 20.

Lovejkin V.S. Matematichna model dinamiki zmini vilotu strilovoyi sistemi krana manipulyatora (Mathematical model of dynamics change length of the crane arm system of a crane-manipulator) / V.S. Lovejkin, Yu.O. Romasevich, O.O. Spodoba // Naukovo-tehnichnij ta virobnichij zhurnal «Pidjomno transportna tehnika». – Odesa: ONPU, 2019. - № 2 (61). – S. 83-92. DOI: 10.15276/pidtt.2.61.2019.07

Bakaj B.Ya. Poperednye predstavlennya rivnyannya dinamiki manipulyatora metodom Lagranzha-Ejlera (Preliminary representation of the equation of manipulator dynamics by the Lagrange-Euler method) / B.Ya. Bakaj // Naukovij visnik NLTU Ukrayini – Lviv. Vidavnictvo NLTU Ukrayini, 2011 – Vip. 21.18. – S. 322 – 327.

Petrov B.A. Manipulyatory (Manipulators) / B.A. Petrov // – Leningrad. Mashinostroenie, 1984. – 238 s.

Mihajlov S.I. Issledovanie dinamiki manipulyatora s uprugimi zvenyami (The study of the dynamics of a manipulator with elastic links) / S.I. Mihajlov, F.L. Chernousko // Izv.: AN SSSR. Mehanika tverdogo tela – 1984. – №2. – S. 51-58.

Chernousko F.L. Dinamika upravlyaemyh dvizhenij uprugogo manipulyatora (Dynamics of controlled movements of an elastic manipulator) / F.L. Chernousko // Izv.: AN SSSR. Tehnicheskaya kibernetika. – 1981. – №5. – S. 142-152.

Tertychnyj-Dauri V.Yu. Dinamika robototehnicheskih sistem (The dynamics of robotic systems) / V.Yu. Tertychnyj-Dauri // – SPb.: NIU ITMO, 2012. – 128 s.

Berbyuk V.E. Dinamika i optimizaciya robototehnicheskih sistem (Dynamics and optimization of robotic systems) / V.E. Berbyuk // – K.: Naukova dumka, 1989. – 188 s.

Lovejkin V.S. Matematichna model dinamiki zmini vilotu krana manipulyatora z zhorstkimi lankami. (Mathematical model of dynamics of change of departure of the crane of the manipulator with rigid links ) / V.S. Lovejkin, D.O. Mishuk // Zhurnal «Tehnika budivnictva». – K.: KNUBA, 2006. – Vip. №19. – S. 26-29.

Mishuk D.O. Matematichne modelyuvannya zmini vilotu vantazhu manipulyatorom z gidroprivodom (Mathematical modeling of change of departure of cargo by the manipulator with the hydraulic drive) / D.O. Mishuk, V.S. Lovejkin // Girnichi, budivelni, dorozhni i meliorativni mashini. – Kiyiv. 2012. – S. 9-15.

Smolnikov B.A. Problemy mehaniki i optimizacii robotov (Problems of mechanics and robot optimization) / B.A. Smolnikov // – M.: Nauka, 1991. – 231 s.

Zablonskij K.I. Optimalnyj sintez shem manipulyatorov promishlenyh robotov (Optimal synthesis of industrial robot manipulator circuits) / K.I. Zablonskij, N.T. Monashko, B.M. Shecin // – K.: Tehnika, 1989. – 148 s.

Kobrinskij A.A. Manipulyacionnye sistemy robotov (Manipulation systems of robots) / A.A. Kobrinskij, A.E. Kobrinskij // – M.: Nauka, 1985. – 343 s.

Lovejkin V.S. Dinamichnij analiz rolikovoyi formuvalnoyi ustanovki z krivoshipno-shatunnim prividnim mehanizmom / V.S. Lovejkin, K.I. Pochka, Yu.O. Romasevich, O.B. Pochka (Dynamic analysis of roller forming installation about a crank connecting rod the driving mechanism) // Opir materialiv i teoriya sporud: Naukovo-tehnichnij zbirnik. – Kiyiv: KNUBA, 2019. – Vip. 102. – S 91-108. https//doi.org/10.32347/2410-2547.2019.102.91-108

Emtyl Z.K. O vliyanie podatlivosti rabochej zhidkosti i elementov gidroprivoda na dinamicheskuyu nagruzhennost gidromanipulyatora pri sovmeshenii dvizhenij zvenev (About the effect of flexibility of the working fluid and hydraulic drive elements on the dynamic loading of the hydraulic manipulator when combining the movements of the links) / Z.K. Emtyl, N.M. Bartenev, A.P. Ta-tarenko // Trudy FORA (Fizicheskogo Obshestva Respubliki Adygeya). – Majkop: Izd-vo AGU, 2000. – № 6. S. 83–87.

Lagerev I.A. Dinamika trehzvennyh gidravlicheskih kranov manipulyatorov. Monografiya (Dynamics of three-link hydraulic manipulator cranes) / I.A. Lagerev A.V. Lagerev // – Bryansk Izd-vo BGTU, 2012. – 196 s.

Dobrachev A.A. Matematicheskoe modelirovanie dinamicheskih reakcij opor manipulyatornoj mashiny (Mathematical modeling of the dynamic reactions of the supports of a manipulator machine) / A.A. Dobrachev, L.T. Raevskaya, A.V. Shvec // Vestnik mashinostroeniya. – 2010. – №1 – s. 17-20.

Raevskaya L.T. Isledovanie linejnyh i uglovyh skorostej zvenev manipulyatora (The study of linear and angular velocities of the links of the manipulator) / L.T. Raevskaya, A.V. Shvec, Dahiev F.F. // Vestnik mashinostroeniya. – 2012. – №10 – S. 26-28.

Downloads

Published

2020-09-10

Issue

Section

Статті