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Abstract. This paper deals with the nonlinear oscillations of a prestressed reinforced concrete
beam firmly attached to two supports. The beam is subjected to a harmonic force. The calculations
of such beams are associated with a number of uncertainties in the initial data. This publication is
devoted to questions of their correct accounting.

For a long period of time in mechanics, to tack into account some uncertainties, they have been
using the probability theory for modeling and such theory dominates. It have been proven that the
probability theory can solve a lot of problems but nevertheless it has some weaknesses. In particular,
the lack of statistical information or incomplete information does not adequately reflect the real
object of study in a mathematical model. Recently, many researchers have noted that the uncertainty
in construction is not only stochastic in nature, and this provides an impetus for the introduction of
new developing methods and theories of soft computing. Among them, theories of fuzzy and rough
sets, the reliability of which has already been proven in solving control problems, etc. They are the
most popular and effective theories now.

For the beam under consideration, the amplitude of beam oscillations is determined, provided
that its parameters are indeterminate (fuzzy) and vary within certain limits. An example of
determining the amplitude of the oscillation of the 33-meter-long prestressed beam designed by
Soyuzdorproekt is studied. The membership function for the amplitude of the beam transverse
oscillations using the theory of fuzzy numbers is constructed. The influence analysis of the fuzziness
of the disturbance frequency value on the amplitude of oscillations is performed.

It has been revealed that even a small indeterminacy in the frequency setting can cause the beam
damage, although there will not yet be any damage when setting the accurate frequency. Thus for

the value @{”

=18.2 , the corresponding value A3(°) of the right endpoint of the amplitude interval
exceeds the maximum acceptable value of 0.076 m, although the modal value of the amplitude does
not exceed the acceptable value. Therefore, when calculating the amplitude of structural oscillations,
the interval endpoints of the frequency variation should be taken into account, and not its modal
value. Analysis of the table shows that further increase in the oscillations frequency leads to
resonance, because it moves beyond the acceptable limits both the endpoints of the interval of
undetermined amplitude, and the modal value.

Keywords: forced oscillations of prestressed concrete beam, membership function, perturbation
frequency, the theory of fuzzy numbers.

1. INTRODUCTION

The project designing is connected with the parameters of materials needed for
its creation such as the elasticity modulus of concrete and steel. They are not
determined as well as the dimensions of units of the unbuilt construction
Therefore, at the design stage one should take into account the indeterminacy of
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parameters and foresee its further consequences. We will show how to take into
account the indeterminacy of the parameters for defining the amplitude of the
oscillations of the prestressed concrete T-shaped cross section beam objected to
harmonic perturbation. Prestressed concrete beams are widely applied in bridge
construction due to the use of high-strength reinforcement. It is known that
concrete is well-compressed but it does not work well in tension. Therefore, the
reinforcing frame includes high-strength rebar. To fully use the carrying capacity,
the high-strength rebar is stretched between stops before its concreting. Without
pre-tension of the reinforcement the concrete layer inside it is not able to
withstand stretching and may crack. This cannot be allowed, because the moisture
that penetrates into the cracks from outside will cause corrosion of the
reinforcement. In addition, cyclic freezing and thawing destroys the beam.
Therefore, pre-tension of the reinforcement is applied. Such 33-meter-long beams
have been designed by "Soyuzdorproekt" and applied in bridges for over 50 years.
The precast beams are manufactured with the help of the rolling stands. First, the
reinforcement frame including 10 bunches of 5 mm high-strength wire is mounted
on a metal rolling stand. Each bunch consists of 24 wires. There are anchors at the
ends of the bunch. The main task of an anchor is to pass on the tensile force of the
bunch to the concrete after his release from the catch. After stretching the bunches
to the designed size the stand with the frame and tensioned bunches is rolled into
the casting workshop. After casting with concrete, the beam doesn’t reach the
designed strength. Thus the beam is rolled into the steaming chamber where it is

kept for 24 hours at a temperature of 90°C . It reaches the designed strength in
this chamber (under normal conditions it takes 28 days). After steaming the
finished beam is rolled to the warehouse
(Fig. 1). The bunches are released from the
catches there. As concrete compresses the
beam flexes upwards. Calculation of the
tensile force of the bunches provides the
absence of cracks in the top layer of the
beam.

Consider the  forced transverse
vibrations y(z,f) of the beam with the

constant moment of inertia of section /, the
modulus of elasticity of concrete E, the
cross-sectional area S, the length / , and

the linear mass m . Here z is the abscissa
of the point of the beam axis, ¢ is time. Let
us consider the case where both supports on
which the beam rests, for some reason are

Fig. 1. A prestressed beam on a stand stationary (Fig. 2). In this case, a horizontal
reaction H arises under the transverse displacement, and it is determined by the
following formula
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_ES 1,
H_T-jo yidz . (1.1)

Fig. 2. Sketch of the beam fixed on two supports

The transverse variable force affects the beam Fj(¢) . Taking into account

the formula (1.1) and according to N.G. Bondar [1], we obtain the following
equation of oscillations

Lzn=2 (y —ay f; yfd2)+ Y 02 (1.2)

m m
Here, the subscript for the function y denotes the partial derivative with
respect to the corresponding variable, 6(z)—9 is the Dirac function, and b is a

point of application of a force. We seek a solution in the following form
y(z,f):x-sin%, (1.3)

where x = x(¢) . This solution satisfies zero geometric and force conditions. In

accordance with the Bubnov-Galerkin method, we substitute function (1.3) for
equation (1.2) and minimize the functional

j(j L(z,t)-sin % dz.

We result at the Duffing's equation

i+ta-x+B-x =F(@), (1.4)
Where
‘EI 2F, (¢
a:ﬂ—4’ ﬂ:a.i’ E(f): 0()Sin”_b. (15)
ml 4] [-m

Let F,(t)= f-sinw-t, where f isthe amplitude of the perturbing force, ¢ is
time, @ is the frequency of harmonic perturbation. Let the perturbing force be

applied in the middle of the beam (sinﬂTb=l). After the replacement of

2- . .
l_f = F, equation (1.4) is expressed as
-m
¥+a-x+p-x =Fsinot . (1.6)
Thus, the problem of oscillations of a beam with the geometric nonlinearity
leads to the solution of the Duffing’s equation with a strict characteristic of the
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restoring force (a >0, >0) The problem of oscillations of a beam with the

physical nonlinearity also leads to the Duffing’s equation (1.4) , when the
tension is connected with the relative elongation by the relationship
c=E-c+p,-¢.

In this case, the coefficient S can be either positive or negative.

In articles [2, 3] a fuzzy double crisis is observed in the forced Duffing’s
oscillator with multiplicative fuzzy noise. The Duffing’s equation contains only
one fuzzy parameter with triangular membership function. In this paper, we
consider the forced Duffing’s oscillator having several triangular fuzzy
parameters. Let us consider the stationary mode of oscillations of a system,
according to which the principal component of the solution has the form of the
right-hand part. Naturally, this regime occurs under certain initial conditions.

2. PROBLEM DEFINITION

Let us construct an approximate solution by the Duffing’s method. In order
to reduce the quantity of equation parameters, we proceed to dimensionless
variables. Let x, be the static deviation of the corresponding linear system

5 =1L @1
a

A new dimensionless variable y can be defined by the equality

X
=—. 2.2
Y 22)
This is a relative displacement. Taking into account the equality (2.1), we
obtain from the equality (2.2) the following
X-a
== 2.3
y="% (23)
We proceed to the dimensionless argument 7 connected with the variable ¢
by the equality
Ja-t=t. (2.4)
Considering the equations (2.3) and (2.4), we result at the equation in
dimensionless variables, which has already got one parameter ¥ instead of three
2

d’y

T2+y+;/~y3=sinv-r. (2.5)
Here
LF?
7’=ﬂa3 ) (2.6)
y="2. 2.7)

Let the null approximation have the form of the right-hand part and is a
harmonic



ISSN 2410-2547 151
Omip matepianiB i Teopis cropya/Strength of Materials and Theory of Structures. 2020. Ne 104

y=Asinv-t (2.8)
with not yet defined amplitude A4 . Depending on the initial conditions, the
value of the amplitude A can be either positive, which corresponds to the in-
phase oscillations with the active force, or negative, which corresponds to the
oscillations in the antiphase, respectively. The null approximation satisfies the
initial conditions

bid dy

T=——7V\ y=4, —=0. 2.9
2-@ 4 dr @9)
In accordance with Dufing’s idea, we add to both parts of equality (1.6) the

expression v* -y . We get the following
2

d’y
dr?
Substituting the expression (2.8) for the variable y for the right-hand part of

+viy+y+y-y =sinv-r+vioy.

the equation as well as the third and the fourth members from the left-hand part

of it, we result at the equality
2

d’y
dr’
The eigenfrequency of the linear system, artificially created as a result of the

+v? ~y=sinv~z'~(1—A+VZA—%~7/~A3)+%~7/~A3 sin3-v-7t. (2.10)

adding the summand v>-y to both parts of the equation, coincides with the

frequency of the first right-hand part summand. To exclude resonance, the
expression in parentheses from the right-hand part should be equated to zero.
This is the sense of the Duffing’s idea. We reach the equation for determining
the amplitude

1—A+v2A—%-y-A3=O, (2.11)

The last equality is the amplitude-frequency characteristic equation. Now the

equation (2.10) is expressed as
2

d’y

dr’

A particular solution of this equation which satisfies the initial conditions
(2.9) is expressed by the equality

+v2~y=%~)/-A3sin3~v~r,

3
. & . .
=A4sinv -7+ ——-(sinv-t —sin3-v 7).
y R ( )

This equality describes the first approximation of the equation solution (2.5).
The equation (2.11) of the amplitude-frequency characteristic (AFC) of the null
approximation contains only one parameter y . The diagram of the function v
under y =1 is shown in Fig. 3.

By replacing the variables in this equation, you can get rid of this parameter
as well. First, we find the minimum point of the diagram of the perturbation
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frequency v and the oscillations amplitude A4 relationship. This point has the

following coordinates
_ 2 ,v*=,/1+3~3/ﬂ.
3.y 16

We enter new dimensionless

variables ¢ and 4 and express
through them the amplitude A
and oscillations frequency v , by
the formulas

via) 2
A=—-d-3 , (2.12)

3.y

3.y
1+3-¢-3 1— (2.13)

—108—6420246810

The substitution units in
these equalities instead of
variables ¢ and d gives us the
coordinates of the minimum
point of the function v . Substituting the right-hand parts of equations (2.12) and
(2.13) into equation (2.11), we result at the equation in new dimensionless
variables ¢ and d :

a

Fig.3. Diagram of the amplitude-frequency relationship

d*-3-c-d+2=0, (2.14)
which no longer contains any parameter. The diagram of the relationship
between the variables ¢ and d is shown in Fig. 4. From equality (2.13) we
express the variable ¢ through the frequencyv :

5 AU
) 3-312-y
. Taking into account the
equalities (2.6) and (2.7),
: we find
1 2
4-(0° —)
=———= (215
ﬂ,? ¢ 3'3112'/3-F2 ( )
. The equality (2.3) shows
5 that the amplitude A4, of the
- oscillations of the variable
o x is related to the
-3 5 -4 -3 -2 -1 4 = amplitude A of the
d dimensionless variable y

Fig. 4. Diagram of relationship between ¢ and d by the equality
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A-F
4=

Taking into account the equalities (2.6) and (2.12), after simplification we

obtain
4 =—d~3/§:—;. (2.16)

According to the Cardano formulas, from the equation (2.14) we find the
value d as a function c:
d=d(c)=W(c)+V(c) for any value of c; (2.17)

d =da(c)=-0.5-(W(c)+V(c))+0.5 -(W(c)—V(C))w/Z ,if ¢>1;(2.18)
d=db(c)=-05-(W(c)+V(c))-0.5- (W(c)—V(c))w/z ,if ¢>1. (2.19)
Here the following is expressed

W(e)=+-1+V1-¢*, V(e)=v-1-+1-¢" .

The diagram of the function d is shown in Fig. 5. The equation (2.14) has a
single real root if ¢ <1, and it is
defined by the formula (2.17). If

¢>1, the equation (2.14) has &
three real roots, and they are 3
defined by formulas (2.17), a(y)

(2.18) and (2.19). In this case, =—— 1

the branch of the diagram that ~ 4a(¥)

corresponds  to the formula gy
(2.18) for ¢>1, and formula

(2.17) for ¢ <1, determines the i ""--.,"

negative values of the root d 4

and corresponds to the large (in- .

phase) oscillations of the beam. -5 -4-3-2-10 1 2 3 4 5
The branch of the diagram, ¥

which  corresponds to the
formula (2.17) for c¢>1,
determines the large positive values of the root. It is proved that they correspond
to unstable points of the amplitude-frequency characteristic, so they should not
be taken into account. The branch which is defined by the formula (2.19) for
¢ >1 determines the smaller positive values.

It corresponds to the small (antiphase) oscillations of the beam. The
relationship between the function d and parameter ¢ for large oscillations takes
the following form

Fig. 5. Diagram of the function d

da(c),if c¢>1,

dzdm(c):{ d)if c<1 .
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tn

4
3
2
1

dm(y)

-4

The diagram of the
relationship ~ between  the
function d and parameter ¢
denoted by a continuous line

for large (in-phase)
oscillations, and by a dashed
line for small (antiphase)

oscillations is shown in Fig,. 6.

The realization of large or
small oscillations depends on
the initial conditions. Taking
into account equalities (2.15)

=§
~5-4-3-2-10 1

v

Fig.6. Diagram of the function d for large and small

oscillations

2

3

4

5 and (2.16), we obtain the
amplitude of oscillations 4, .

Let wus calculate the
amplitude of oscillations under

undetermined values of parameters of the T-shaped prestressed beam. We will
consider the beam parameters as undetermined triangular numbers, because they
have valuable properties such as the simplicity of the description and the clarity
of the interpretation, the keeping of the form when adding and subtracting, and
the convenience of decomposition on a « - level system. Besides, there is no
statistics for such a problem. A cross section of the beam is shown in Fig. 7. All
sizes are given in millimeters. Here /= 1730mm’ a =200mm , b =580 mm

e =1400 mm = c¢= 20mm . We calculate the moment of inertia of the beam

cross section. First, we determine the position of the neutral axis y, with

respect to the lower face of the cross section. The standard stress P, in one

g

R300

6d
R200

i

|
‘L’ b [‘

Fig. 7. Cross-section of the beam

160

bunch is equal to 499300N and
corresponds to the stretching of the
reinforcement by 198 mm. After
cutting the bunches, the concrete
shrinks and the stress in the beam
decreases. We determine the total
stress in ten bunches after concrete
compression. The tension stress of the
reinforcement after compression of
concrete decreases and is expressed
0.198 —x

0.198
it to the compression

as P,=10-P, -  Equating

stress of
concrete which is equal to S-?E

we find the wvalue x of the
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contraction of the bunches: x =0.0086 m. Here S =0.704m’ is the area of the

beam cross section, E =26-10°Pa is the modulus of elasticity of concrete of a
B 35 rate, / =33m is the length of the beam.

The reduced tension force of the bunches P, is 4.776-10°N. The position of
the neutral axis depends on the stress in the tensioned reinforcement. The
manufactured beam lies on the rolling stand and is under the influence of its own
weight and compressive force passed from the prestressed reinforcement. The
beam lying on the stand, in accordance with the design, has a short-term bend A
caused by the prestressing force and its own weight and it is equal to 32.5 mm.

We result at the equation with respect to the value y, :

M- 5 gl
8-E-1(y,,0) 384 E-I(y,,0)
Here the first summand is the inflection from the beam compression by

stretched beams, the second summand is the deflection from the beam's own
weight, g is the load from the beam's own weight ¢ =17218N/m, M(y,) is

=0. (2.20)

the moment of the compression of the concrete by prestressed reinforcement
M (39) =Py (¥a = ¥0)-
Here y, is the distance from the lower face of the cross section to the center

of the bunches. The moment of inertia is a function of the position of the neutral
axis y, and the deviation & of the cross-sectional dimensions from the
designed values. It is defined by the following formula

0.0849 £1.73+6
100:8)=2[ [y [} 30 o+

0
0.138+65 1.73—/0.04—(x—0.28-5)*
oases

0.08+5 J0

0.31+8

0.51-x 5
138+5.[o (y_yO) dydx —

(v =) dyelx +],

_jo.31+5j10~(x—0.29—5)( 3 ) dvd +J~0.38+5J~173+x ( ) dvd+
0.29+6 J0 Y=Yo) @YAXT] ) ers 1.25++/0.09—(x—0.38-5)? =)o) @yex
+J‘0.7+6J‘173+6 y y dydx] (221)
0.38+8 J155 0 ’ ’

Similarly, we calculate the cross-sectional area as a function of deviations of
the cross-sectional dimensions. Let the dimensions of the section have a deviation
within the tolerance +0.003 m. Solving the equation (2.20) and taking into
account the equality (2.21), we can calculate the moment of inertia. Depending on
the deviations of the cross-sectional dimensions, the cross-sectional area S and the
moment of inertia / have the following values and intervals of variation

S§=0.704m>, 0.691m*><S<0.718m’;
I=0285m*, 0.281m*</<0.29m".

Let the undetermined length of the beam /, the linear mass m, the modulus of

elasticity of the concrete E , the amplitude of the perturbation force f and the



156 ISSN 2410-2547
Omip matepianiB i Teopis cropya/Strength of Materials and Theory of Structures. 2020. Ne 104

perturbation frequency®, as well as their intervals of variation have the
following values
[=33m, 32.99m</<33.0lm;
m=1756kg/m, 1724kg/m<m <1791kg/m
E=26-10"Pa, 25-10°Pa<E <27-10°Pa;
f=50N, 499N < f <50.1N;
o =178 Hz, 17.7Hz <w <17.9 Hz.
3. DEFINITION OF AN UNDETERMINED TRIANGULAR NUMBER
An undetermined triangular number is a number with a carrier
Supp(A) = [al,a3] with a single modal value for which uA(x)=1 and the
membership function [4]:

x—a
_— a, £x<a,,
a, —aq
a, —Xx
3 .
UA(x) = , a,<x<a; 3.1)
a;—a,
0, x<a,x>a,.

The undetermined number function can be interpreted as a measure of the
designer's confidence that all the points of a certain segment differ little from the
determined value that belongs to it, and we probably do not know the determined
value. It’s natural that the longer the segment, the less confidence that all its points
are close to the determined value. The membership function is a subjective
evaluation. The values that the membership function takes are called the o -level
of the undetermined number. For example, if according to the results of all the

studies the modulus of elasticity of concrete is expressed by the interval [al ,a3] ,
then its « -level is equal to zero, and « -level of the determined number is equal
to one, because the determined number is the interval the ends of which are equal
to it. The undetermined number is unimodal. If the condition u,(x)=1 is true
only for one value, this singular number is called a mode. It is obvious that the
mode of the triangular number is a,. Let all the parameters of the problem be

unimodal undetermined numbers. We will operate with the undetermined
parameters based on the interval method. The undetermined triangular number A
is completely defined by three determined numbers. Therefore it is expressed by

A=(a,,a,,a,), and its o -level interval is written as A, =[al(“),a3(“)] It's

obvious that @, =a'”, a,=a'",a,=4a" =a,". Taking into account the
expression (3.1), the ends of the interval 4, can be written as functions « :

A4, =[(a2 —al)-a+al,—(a3—az)-a+a3].
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4. OPERATIONS ON UNDETERMINED NUMBERS BASED ON THE
INTERVAL METHOD
Let 4 and B be two undetermined, not necessarily triangular, but unimodal

numbers  with the «-level intervals and 4, =[¢“,a/"] and
B, = [bf‘”,b;‘”} , Yae(0,1] . The operations on the o -level intervals of
undetermined numbers A4 and B are performed according to the following rules
A, +B, = [al(a)’a3(a):|+ [bl(a)’b3(a):| — [al(a) +b](a)’a3(a) +b3(a):| ,
A, -B, = [al(a)’%(a)} _[bl(a)’b3(a):| — [al(a) _bl(a)’a3(a) _b3(a):| ,
A4, -B, = [al(a)’%(a)}_[bl(a)’b3(a):| —
min{al(") ,bl<a>’al<a> 'bS("),aS(“) -bf“’,af“’ 'b3(“’},
max{al(") 'bl(a)’al(a) 'b3(“),a3(“) -bl(“’,a3(“) -b3(“’}

The multiplication of the « -level interval of the undetermined number by a
determined number £ is defined by the following rule

ked, =k-[a,a,” ] =] min{k-a k-b”}, max {k-a k-5 }].

The inverse « -level interval of the undetermined number is the
undetermined number

_ 1 -1 1 1 1 1
A)'=—= a,a”| = min{—,——} max{—,——"}|.
( a) 4, [‘ 3 J a@ a3<a> a' a3(“)

There is no need in division operation, because it can be reduced to
multiplication by the inverse number.
Let us define the membership function of the amplitude of oscillations. First, let
us calculate the o -level of undetermined parameters 7,S,E,l,m, F, o :

L =[50, =[s.8]. E, =[E“.E“]. 1, =[1\”.],
m, = [ml(a)’mS(a)J = |:fl(a)’f3(a):| , 0, = [wl(a)’G)}(a)J .
Here the endpoints of the intervals are defined by the formulas:
1=, ~1)-a+1, I\) =—(I,-L)-a+1,; I, =0.281, I, =0.285,

1,=0.29,
S =(8,-8)-a+S,, S =—,-S,)-a+S,; S, =0.691, S, =0.704,
S, =0.718,
E“) =(E,—E)-a+E,, E) =—(E,~E,)-a+E,; E, =25-10°, E, = 26-10°,
E, =27-10°,

1 =, —1)-a+1, 1 =—(l,~L)-a+1,; [, =32.99, [, =33, [, =33.01,
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m = (m,—m)-a+m, m =—(m, —m,)-a+my; m =1724, m, = 1756,
my = 1791,
K== f)atfis A7 =~(fi=fi)-a+ fis =499, f,=50, f,=50.1,
o =(0,-0) a+o, 0! =—(0,-0,) a+o,; 0, =177, 0, =17.8,
w, =179,

Here and below, the moment of inertia is expressed by m*, the cross-
sectional area is expressed by m*, the modulus of elasticity is expressed by Pa,
the length is expressed by m, the linear mass of the beam is expressed by
kg/m, the amplitude of the perturbing force is expressed by N, and the
frequency of the perturbation is expressed by Hz.

We calculate the membership functions of the parameters (1.5) of the
Duffing’s equation. From the first and second equalities of the expression (3.1),
according to the above mentioned rules of operations on undetermined numbers,
we calculate the endpoints of the intervals

a,=[a.a" ] and p, =[ B\ p"]:

4 p(o) | p) (@) | () (@)  gl@
@ BT 2@ = r B ﬂ(“) _ al =S
LT (@) g4 > 3T (a) aNd PP T T e
ms '(13 ) (l ) [
(o) (o)
B @ _% -85
3 4.[1(0;)

Let us calculate the o -level of the undetermined number ¢, guided by the
equality (2.15) by transforming the latter to the following form
ca = Ra Wa s
where the following is denoted

femt (w_q ok F

Ra — [Rl(a),R3(a)] , Wa — [VVl(a) W(tl)

The endpoints of intervals are defined by the formulas.
()2 ()2
RO = [ ) g o[ )
a, q

o
@__ 4 e _
W, >, W,
3 IB(a) (a) 3 IB(a) (a)

According to the rule of the trlangular numbers multlpllcatlon, we get thea -
level interval of the parameter ¢ :

= —| A (o)
ca—Ra-W;[—[c1 .G },
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where the endpoints of the interval are defined by the formulas:

cl(a) — min{Rl(a) 'VVl(a),Rl(a) 'VV3(a),R3(a) 'm(a),R3(a) _VVS(Q)} ,

C;a) — max{Rl(a) 'VVl(a),Rl(a) _VV3(0¢)’R3(0¢) 'm(a),R3(a) _VVS(Q)} .
After the calculation we have a non-triangular unimodal number

V' =-43423, ¢V =-201.437, {” =-8.758..

Let the initial conditions be such that the beam carries out large oscillations.
5. CALCULATION OF UNDETERMINED AMPLITUDE OF
OSCILLATIONS

The diagram of the function d (Fig.6) decreases monotonely which
simplifies the calculation of the undetermined o« -level number intervals

d, = [df”,d;”} . The endpoints of the interval are defined by the equalities:
dl(tl) — d(C3(a)), d}(a) — d(cl(a)) .
Taking into account the equality (22), we calculate the endpoints of the « -
level intervals of the undetermined amplitude 4,, = [Al(“), A, J :
2 F(tl) 1/3 2 F(tl) /3
2 ey B i =2 ) E
1

The membership function for the oscillation amplitude is convex but not
triangular. The diagram of the undetermined amplitude membership function is
shown in Fig. 8 which is calculated by the given undetermined parameters of the
problem. The carrier of the undetermined amplitude of the nonlinear oscillations
of the beam is the following interval

[ 49, 47] =[2.559:10"m; 1.401-10"m].

The mode of undetermined amplitude 4, is 5.797-10°m . The average

value of the undetermined amplitude is calculated by the formula
A4, = II—A‘ @)+ 4(a) da
0 2
and is equal to 5.797-10” m . In some cases, the middle of the interval for the
a = 0.5 level membership function can be taken as the expected value of the
undetermined number. We have
4 = 4,(0.5)+ 4,(0.5)
sr 2

Let us determine the largest amplitude of oscillations at which the yield of
high-strength wire begins. We find the largest amplitude of oscillations provided
that the deflection of the beam from the moment of the compression force of
concrete by high-strength reinforcement, stretched up to the yield strength, is
equal to the sum of the largest value of the oscillations amplitude and the
deflection of the beam from its own weight. The largest compression-caused
deflection of the beam y,, in the middle of the span is determined by the equality

=7.744-10" m.
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1 :Ptek'(yo_yu)'lz
Veek 8. E-1 .
08 Here P, is the total
stress from the stretched
a 09 bunches at which the high-
e strength reinforcement
2 o yield begins.

' According to  the
laboratory tests, the yield
02 strength force for a single
5 mm wire is 32,340 N, so
0 we have
0 310" 6107 010" 1241075077 P, =7.762-10°N. Taking
rAl(o) ,rA3(a) into account the equality
Fig. 8. Diagram of the undetermined amplitude of the Vo=, =0.792m, we

oscillation function

obtain the largest
deflection of the beam which is equal to y,, =0.111 m. The deflection from the
own weight of the beam in the middle of the span is 0.035 m. Therefore the
acceptable value of the oscillations amplitude is 0.076 m. Table 1 shows the
values of the endpoints of the intervals of the large oscillations amplitude 4'”,

A, and the modal value 4", expressed in meters, as well as the values of the

endpoints of the oscillation frequency intervals ", o!”

(1

, and the modal value

o expressed in hertz, respectively.
Table 1
Values of the endpoints of the intervals of the large oscillations
amplitude 4", 4" , and the modal value 4"

o " »” A© A A
9.9 10 10.1 5.594-10° 6.998-10° 8.778-10°
17.7 17.8 17.9 2.559-10°° 5.797-107° 1.401-10°°

17.75 18 18.2 2.637-107° 7633107 0.284

18.1 18.15 18.2 3.358-107° 1.0-10™* 0.284

19 19.1 19.2 1.232-10 0.337 0.631

19 19.5 20 1.232-10 0.458 0.816

26.84 26.85 26.86 1.259 1.527 1.844

6. CONCLUSIONS

Analysis of the results given in the table shows that even a small
indeterminacy in the frequency setting can cause the beam damage, although there
will not yet be any damage when setting the accurate frequency. Thus for the
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valuew!” =18.2, the corresponding value 4,” of the right endpoint of the

amplitude interval exceeds the maximum acceptable value of 0.076 m, although
the modal value of the amplitude does not exceed the acceptable value. Therefore,
when calculating the amplitude of structural oscillations, the interval endpoints of
the frequency variation should be taken into account, and not its modal value.
Analysis of the table shows that further increase in the oscillations frequency leads
to resonance, because it moves beyond the acceptable limits both the endpoints of
the interval of undetermined amplitude, and the modal value.
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Cmamms naoditiwna 21.02.2020

baes C.B., Boruok JI.J1

HEJIHIAHI KOJIMBAHHSA MONEPEIHBO HAMPYKEHOI 3AJII30BETOHHOI
MOCTOBOI BAJIKU ITPH TAPMOHIHOMY OBYPEHI B YMOBAX HEUITKHX
ITAPAMETPIB

AHoTauis. Y nmasiif poGOTi po3risigaloThCsl HEMiHIMHI KOJMBAHHS IOMEPEIHBO HAIPYKEHOT
3aJ1i300€TOHHOI 0aliKi, HEPyXOMO 3aKpilJieHOi Ha JBOX oropax. bajka 3HaXOIUTBCS IiJ €0
rapMOHiiiHOI cuin. Po3paxyHKM Takux OajlOK MOB'S3aHi 3 IJIOK0 HHU3KOK HEBU3HAYCHOCTEH Y
BUXIZHUX JAaHUX. [INTaHHSIM KOPEKTHOrO 1X BpaxyBaHHS MPHCBAUYETHCS JaHa TyOiKaLlis.

JloBruii yac B MexXaHilli, [ BpaxyBaHHS HEBH3HAYEHOCTEH, TOMIHY€ BHKOPHCTAHHS Teopii
fiMoBipHOCTEH B MojemoBaHHi. Llst Teopis JoBesna CBOK e(EKTHBHICTh y pO3B's3aHHI 0arathox
3a7a4, aje Mae i Jeski cimabki cTopoHH. 30Kpema, HEeJOCTaTHs CTaTHCTHYHA iHdopmaris abo
HEMOBHA iH(OpMalLis He M03BOJSIE aJeKBaTHO BiOOpakaTH peanbHUH 00'€KT IOCIIIKEHHS B
MareMaTH4Hii mMoneni. OcraHHIM YacoM 0arato JOCIiIHHKIB BiJ3HA4alOTh, 1[0 HEBU3HAUYCHICTH B
OyIiBHHLTBI HOCHTH HE TIIBKM CTOXaCTHYHHH Xapakrtep. lle mae momToBX Ui BIPOBADKCHHS
HOBHX METOZIB 1 Teopiif M'sikux obunciens. Cepen HUX HAWOUIBIILY MOMYISIPHICTD | ehEKTHBHICTE B
JAHUH Yac MAIOTh TEOpii HEUITKUX I HETOYHHX MHOXHH, HOCTOBIPHICTb SIKMX yX€ JOBEICHA MpH
BUPIIICHHI 33424 yIPaBIiHHA 1 T.1.

Jlist po3risiHyTOl Oalki BH3HAYeHA aMILIiTyJAa ii KOJMBAaHb 3a YMOBH, IO ii MapaMeTpu €
HEYITKUMH 1 3MIHIOIOTBCS B IIEBHUX MeXax. PO3rIsiHyTO npHKiag BU3HAYCHHS aMILIITYI1d KOJIMBAaHb
HONEPEAHBO HAIMPYKEHOI OallKk JOBXHHOK 33 M, 3anpoektoBanoi Coro3moprpoekt. [1o6ynoBana
(YHKIIST HAJEKHOCTI aMIUIITyAN MONEPEYHUX KONMBAHb OAJIKM 3 BUKOPHUCTAHHSIM TEOPil HEUITKHX
MHOXMH. BHKOHaHO aHai3 BIUIMBY HEYITKOCTI 3aBAaHHS YacTOTH OOYpEHHs Ha aMILLTYLy
KOJIMBaHb. BusBIEHO, IO HAaBiTh Maja HEYITKICTh B 3aBJaHHI YacTOTH MOXE BHKIIMKATH
pyiiHyBaHHs OajKu, XO4 NpH YITKOMY 3aBIaHHI 4YacTOTH pyHHyBaHHs e He Oyae. Taxk i

(0)

3HaueHHs @ =18.2 BianoOBinHE 3HAUEHHS A3m) [PABOro KiHI iHTEPBAIy aMILIITY/H [1EPEBUILYE

rpaHuyHe jgornycrume 3HaueHHs 0.076 M, xoda MoOjajbHE 3HAYCHHS AMIUNTYAH HE IEPEBHUILYE
nomycTuMe 3HadeHHs. OTxe, MpH OOYHMCIICHHI aMIUITYAM KOJMBaHb KOHCTPYKLIH B pO3paxyHOK
cinin OpaTd KiHLI iHTepBaldy 3MIiHM 4acTOTH, a HE 1l MOJaJbHE 3HAYCHHS. AHaII3 IOKa3ye, IIO
Hojajble 301IbIICHHS. YaCTOTH KOJIMBAaHb BEAC JO PE30HAHCY, TOMY L0 BHBOAUTH 33 NOMYCTUMI
MexXi 1 KIHI iHTepBally HEUiTKOI aMILTITYH, 1 MOJAJIbHE 3HAUCHHS.

Kiaro4oBi cjioBa: nornepeqHb0o HaNpyKeHa 3aii300eToHHa 0ajika, Teopis HEYiTKUX MHOXHH,
(YHKLSI IPUHATISKHOCTI, YacToTa 30ypeHb, aMILTITyJa KOJIHUBAHb.
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baes C.B., Boruox JI.J1

HEJIMHENHBIE KOJIEBAHMSI IIPEABAPUTEJBHO HANIPSI)KEHHOM
JKEJE30BETOHHOI MOCTOBOW BAJIKU ITPU TAPMOHUYECKOM
BO3MYIEHUU B YCJIOBUSIX HEUETKOCTH NIAPAMETPOB

AHHoTanus. B naHHOW paboTe paccMaTpuBarOTCs HEIMHEHHbIE KOJEOaHUS NPEIBApUTEIBLHO
HANpPSDKCHHOM )kee300eTOHHOW 0alikk, HEMOJBIMI)KHO 3aKpEIUIEHHOH Ha JBYX omopaX. banka
HAXOJMUTCS TMOJ JACHCTBHEM TapMOHHYECKOW CHIIbl. Pacy€rbl Takux OalioOK CONPSDKEHBI C LIEJIbIM
PAIOM HeonpeenEHHOCTeH B UCXOJHBIX JaHHBIX. Borpocam KOPpEKTHOro uX yuéra MOCBSILACTCS
JIaHHas MyOJIMKaLKs.

Jlonroe BpeMsi B MEXaHMKeE, I Yuéra HEONpPEeAeNEHHOCTEH, AOMHHHMPYET HCIIOJIb30BaHUE B
MOJICIHPOBAHHN TEOpHU BeposiTHOcTH. OHa nokas3ana CBOKO I()(EKTHBHOCTh B PELICHUH MHOIHX
3aja4, HO HMEET M HEKOTOpble Ciadble CTOPOHBL. B YacTHOCTH, HEJOCTATOK CTaTHCTHYECKON
MHGOPMALIMY WM HEIoJHask HH(POPMALMs HE MO3BOJISIET aIeKBATHO OTOOpPaXKaTh PeasbHBIN OOBEKT
UCCIIEIOBAHUS B MAaTeMaTHYECKOH Mojenu. B mocienHee BpeMss MHOTHME MCCIEOBATENM OTMEYAIOT,
YTO HEONpPE/eNEHHOCTh B CTPOUTENBCTBE HOCUTh HE TOJILKO CTOXAaCTHMYECKUI Xapakrtep, U 3TO Haér
TOJYOK IJI1 BHCAPCHHUS HOBBIX Pa3BUBAKOIIUXCSI METOAOB U Teopuﬁ MATKUX Bbl‘{l/lCﬂCHl/lﬁ. Cpe;u/l HHUX
HauOOJIbIIYIO TOMYJISIPHOCTh U 3(PEKTUBHOCT B HACTOSIIECE BPEeMs MMEIOT TEOPUH HEUETKHX MU
HETOYHBIX MHOXKECTB, TOCTOBEPHOCTH KOTOPBIX YK€ JOKa3aHa IIpyu PCIICHUU 3a/1a4 YIIPABJICHUA U T.1.

Jlins paccMOTpeHHOW Oasiky ompejelieHa aMIUIMTyJa ee¢ KojieOaHWH HpHU YCIOBHH, 4YTO €€
mapamMeTpnl SABJIAKOTCA HCYCTKHUMH W HU3MEHAKTCA B HM3BECTHBIX INpEaciaax. PaCCMOTpCH npumMep
OIpeeNIeHHs] aMIUTUTY/Ibl KOJICOAHUH npeHanpsHKEHHON Oaliku JUTMHOM 33 M, 3aIpOSKTHPOBAHHON
Corozoprpoektom. ITocrpoeHa (GYHKUUS MPUHAIJICKHOCTH aMIUIMTY/IbI MONEPEUHbIX KOJICOAHHI
6aJ'lKl/l C HUCIOJIb30BAHUEM TECOPHUHU HEYETKMX MHOMKECTB. Bbll'lOJ'IHeH aHaAJIN3 BJIMSHUSA HEUETKOCTHU
3alaHrs 9aCTOThI BO3BMYIICHUA HA aMIUIUTyay KOHGGaHMﬁ. BblﬂBJ’leHO, 4TO JaX€ MaJiasgd HEYECTKOCTh
B 3alaHUM YaCTOTbl MOXXET BBI3BATh pPa3pylICHUC 6aJ'IKl/l, XOTh IPA YETKOM 3aJaHHUH 4YacCTOTBbI
paspymwenns ewé He 6yzer. Tak ans sHauenns o!” =18.2 cootserctBylomee 3Hauenue A,°
IPaBOro KOHLA MHTEpBaja aMIUIMTYIbl IPEBBIMIAET MpeneibHoe ponyctumoe 3HadeHue 0.076 wm,
XOTsl MOJAJIbHOE 3HAU€HUE aMIUIUTYJbl HE IMPEBOCXOAUT AONMycTUMOE 3HaueHue. CliejoBaTeNbHO,
IPH BBIYUCICHUN aMIUIMTY bl KOJIeOaHUH KOHCTPYKLHMI B pacyeT cienyer OpaTh KOHLbI MHTEpBaa
U3MEHEHUsI 4acTOThl, a HE €€ MOJaJbHOe 3HaueHHe. AHAlIM3 II0Ka3blBaeT, YTO JalibHeilee
YBECJIMYCHUE YaCTOTHI KOJ'ICﬁaHl/lﬁ BEACT K PE30HAHCY, IIOTOMY 4YTO BBIBOAUT 3a IOIYCTHUMBIC
npeacibl U KOHLBI HHTEPBaJia He‘leTKOﬁ AMIUTATYAbI, © MOJAJIbHOC 3HAYCHUE.

KiroueBble cjl0Ba: NpeBapUTEIIbHO HAIPSHKEHHAS Kene300eToHHas Oalika, Teopus He4ETKUX
MHOXECTB, (DYHKLHUS IPUHAISKHOCTH, 4aCTOTa BO3MYIICHHI, aMILIUTY/1a KoleOaHHuH.
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