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The paper outlines the fundamentals of the method of solving static problems of geometrically
nonlinear deformation, buckling, and vibrations of thin thermoelastic inhomogeneous shells with
complex-shaped midsurface, geometrical features throughout the thickness, under complex
thermomechanical loading. The technique is based on the geometrically nonlinear equations of
three-dimensional thermoelasticity, the finite element formulation of the problem in increments, and
the use of the moment finite-element scheme. A thin shell is considered by this method as a three-
dimensional body. We approximate a shell by one spatial universal finite element (FE) throughout
the thickness. The universal FE is based on an isoparametric spatial FE with polylinear shape
functions for coordinates and displacements. The universal element has additional variable
parameters introduced to expand its capabilities. The method of modal analysis of the shell is based
on an approach that at each current stage of thermomechanical loading takes into account the
stresses accumulated at the previous stages. The developed algorithm allows one to study geometric
nonlinear deformation and buckling of elastic shells of an inhomogeneous structure with a thin and
medium thickness, as well as to study small vibrations of the shells relative to the reference
deformed state caused by static loading, taking into account large displacements and a prestressed
state. An analysis of the stability and vibration of the spherical panel with the hole is carried out.
The effect on the frequencies and mode shapes of the shell of the sequential action of thermal and
mechanical loads is investigated.

Keywords: elastic shell, hole, buckling, natural frequency, mode shapes, thermo-mechanical
load, universal finite element.

Introduction

Shells as elements of thin-walled structures are widely used in various
engineering applications such as construction, engineering, shipbuilding,
aviation and space technology, transport and other branches.

The shells can be weakened by holes, channels, cavities, and dents in
accordance with technological necessity. During operation such structures can
be subjected to loads of various nature including mechanical and thermal. At the
same time static loads significantly affect both the stress-strain state of the
structure and the dynamic characteristics which include the frequencies and
modes of natural vibrations.

Obtaining information about the natural frequencies and modes of the shell
is one of the important aspects of the complex analysis of the thin-walled
structure. This modal information plays a key role in the design of these
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structures and can provide the strength of the elastic system even at the design
stage.

There are a large number of theoretical, numerical and experimental studies of
shells of various shapes. Background and bibliography can be found in Ref. [1-3, 9-
15]. Although the basic equations and relations of the theory of shells were obtained
long ago, until now analytical solutions to problems have been obtained only for
some relatively simple classes of shells with predominantly canonical form.
Therefore methods of numerical analysis are widely used to solve the problems of
shell theory. Currently, there is a fairly large arsenal of these methods. On their basis
effective approaches have been developed to solve a wide class of problems on the
stress-strain state, stability and vibration of thin plates and shells. A large number of
monographs are devoted to the presentation of these approaches [1-3, 7, 10, 12, 14-
21]. In general a broad bibliographic description is devoted to various aspects of
shell researches [22].This description has been compiled by David Bushnell since
2011 and is currently being updated. On this website page there are people who have
made a significant contribution directly to the field of stability loss, as well as people
who have laid the foundations of the theory and methods of researching various
aspects of analysis for shell structures. The authors as researchers involved in the
study of geometrically nonlinear deformation, stability, buckling, and oscillations of
thin elastic shells [1-3] are also included in Shell Buckling People.

In recent decades the number of articles on the analysis of elastic shells has
expanded significantly. Among them much attention is paid to analyzing elastic
thin shells reinforced by ribs [1-3, 5,6,7,11, 23-25]. Much less research has been
devoted to investigating shells with various weakening [1-8].

The article is a continuation of studies of deformation, buckling, and
vibrations of shell structures. Research is devoted to modal analysis of a thin
shell with a hole.

1 Problem statement and research method

The methodology for studying the natural vibrations of thin-walled shell
structures, taking into account the effects of static thermo-mechanical loading, is
based on an integrated approach. The finite element method [1-2] for
investigating static problems of the stress—strain state, buckling, and
postbuckling behavior of thin inhomogeneous shells, and the method [3, 26] for
modal analysis of shells taking into account the pre-stressed state at each step of
the thermo-mechanical load are used. Thus, the problem of determining the
natural frequencies and vibration modes of the shell is solved by the incremental
method in two stages.

At the first stage, the static problem of nonlinear deformation of
inhomogeneous shells is solved by the method given in Ref. [1-2]. At this stage
for the corresponding increments of the static load the parameters of the stress-
strain state for the finite-element shell model (FESM) are determined. These
parameters include: deformed shape (new coordinates of the nodes and
increment of displacements for them), the stresses in the finite elements (FE),
and others. This problem is solved for each increment of thermo-mechanical
load.
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The method is based on the geometrically nonlinear equations of three-
dimensional thermoelasticity, the finite element formulation of the problem in
increments, and the use of the moment finite-element scheme (MFES).

To develop the FESM, we approximate a thin shell by one spatial FE
throughout the thickness. The universal FE is based on an isoparametric spatial
FE with polylinear shape functions for coordinates and displacements.
Additional variable parameters have been introduced to enhance the capabilities
of this FE [1-2]. The nonlinear deformation of shells is analyzed using the
incremental method based on the general Lagrangian formulation. The problem
of nonlinear deformation, buckling, and post-buckling behavior of
inhomogeneous shells is solved by a combined algorithm. The algorithm
employs the parameter continuation method, and a modified Newton—
Kantorovich method at the step of the load's increment [1-2].

At the second stage of the current step, the thermo-mechanical load is
assumed to be zero (i.e., "deleted") and the parameters of natural vibrations are
determined [3, 26]. At this stage we use the new shell shape and the pre-stressed
state which has been determined at the first stage. For each load increment the
natural frequencies and mode shapes are computed until a negative value of the
fundamental tone (lowest frequency) appears. This is because of according to
the dynamic criterion, the moment of the loading at which a negative value of
the frequency appears may be taken as the moment of loss of stability of the
shell and this load is adopted as critical [3, 26, 27].

The determination of the natural frequencies of the shell is not performed at
the next steps of the thermo-mechanical load increment. Next, only the post-
buckling behavior of the shell is investigated. The accuracy of the calculation
for the natural vibrations of the shell taking into account the pre-stressed state is
confirmed by the coincidence of the value of the upper critical load with that
obtained in another way.

This approach allows us to analyze the joint effect of thermo-mechanical
load parameters and the geometric characteristics of the shells on the buckling
and natural vibrations of shell structures.

2 Buckling and natural vibrations of a panel with a hole

A shallow spherical panel of square planform hinged at the edges and having
a central square hole is considered
(Fig. 1). The shell is under the
action of  thermo-mechanical
loading.

Curvature of the panel is defined
by the parameter K=2 az/(Rh)=32,
where: n=1 cm is the thickness,
a=60h is a size of the panel in the
. plan, R =225k is the radius of mid-
Fig. 1. A shallow spherical panel with a central hole ~ surface. The input data: width of the
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hole b, =124, elastic modulus E = 2.1-10° kg/cmz, Poisson’s ratio v=0.3,

linear expansion coefficient a=0.1210"*deg™', p=7.85-10" kg/cm?3. The

data are taken from Ref. [7, part. 2], where the problem of panel stability under
the action of pressure alone is considered.

The effect of the thermo-mechanical load on the panel consists of two
stages:

(1) the shell is gradually heated by the temperature field whose parameter

increases from 0°C to a set value 7°C. So, at the first stage the stress—strain
state of the shell is perturbed by the temperature field;
(i1) the panel is subjected to uniform normal pressure of intensity ¢ in

addition. So, at the second stage the temperature field is remaining constant.
We consider three options for preheating at 7' =-20°, 0°, 20°C . Results are

presented in terms of dimensionless parameters: g =a’q / (ER*y, u" =u" / h,

where u! is the deflection of the panel along the axis x! .

The results of investigations of the processes of geometrically nonlinear
deformation and buckling of a smooth panel and a panel with a hole are details
presented in in Ref. [1-2, 28].

Examination of the dependence of the frequencies and modes of natural
vibrations of a smooth panel on the mechanical load is given in [4, 26]. It is
shown that neglecting the prestressed state (only the new deformed state of the
shell was taken into account) leads to an incorrect determination of the upper
critical load and frequencies.

The calculating results of a smooth panel are basic for analyzing the effect of
geometric features such as holes on the natural vibrations of a shallow shell.
There is the dashed line with the mark “wsm” for the solution of the smooth panel

— 9

on the “load — deflection” (“g —u ) and “load — frequency” (“¢ —®”) curves.
The calculation results for a panel with a hole are marked “ m:m ”. For the panel
without hole the deflection have been considered at its center, and for the panel
with a hole the deflection have been considered at the point 4 (Fig. 1). The
design model is the panel with mesh 40x 40 FEs.

The accuracy of calculations in the problems of buckling of the indicated
panels had been determined by a comparative analysis of the solutions obtained
using the MFES and calculations performed using the software LIRA [29]
(Fig. 2, Fig. 3).

A comparison of the “q —u ” curves obtained by the MSFE and software
LIRA for shells without hole (mmm) and with hole (m::m) when their loading only
pressure (7=0°C) reveals agreement between the “g—u " curves in the
prebuckling domain and when loss of stability. The difference between the

values of g is respectively -1.9% and 2.9% (Fig. 2).
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For all heating cases, both solutions are in good agreement with each other
throughout the “g —u ” curve (Fig. 3). The disagreement between the values of

g is an area 3.0-3.5%. Configurations for the deformed shell after

pre-cooling to 7'=-20°C and preheating to 7 =+20°C obtained by both
methods, are in complete agreement with each other and have little difference
from the original form (7 =0°C, ¢ =0). Forms of buckling are in good
agreement too (Fig. 4 (a)). Buckling of the panel occurs with click of its central
part (Fig. 4 (b)).
; We have found that that
o E=32 = weakening of the smooth panel
0 ("=mm'") by the central hole ("m:m")
N reduces the critical load g by
N 19.2% (Fig. 2). For the shell with the
. NN hole ("w:m"), pre-cooling and
oot b s preheating leads to a change in the
0= critical load g by 9.78 and -9.97%

X

-0.005

0,015 [ i 3 compared to the corresponding
| unheated panel (7 =0°C) (Fig. 3).
-0.02 AT x? An analysis of the natural
0 005 01 015 02 025 03 yibrations of the smooth ("mm") and
weakened ("m:m") panel shows that
for unloaded shells (T=0°C,g =0)
the presence of a hole reduces the
frequency o, by 3.3% (Table 1). At

the same time, frequencies ®; and

®, are double for a shell without a
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hole, and frequencies ®, and ®; are double for a panel with a hole. Therefore,
the mode shapes differ for the respective shells. For the smooth panel, the mode
shapes that correspond to double frequencies ®, and ®, are conjugate, and the

mode that corresponds to the frequency 5 is characterized by the oscillation of

the central part of the shell (Fig. 5). The opposite nature of the mode shapes is
observed for a panel with a hole (Fig. 6). Modes transform in accordance with
the change in the number of double frequencies during loading (Table 1). At
buckling domain, the vibration modes have the same shape for the shell without
a hole (Fig. 5 (¢)) and with it (Fig. 6 (a)).

Table 1
Panel natural frequencies ; at various load values 7' (T=0°C)
Ne
al‘ ®;, Hz 0, , Hz O3, Hz Oy, Hz O, Hz W, Hz
i .53378e+3 .53378e+3 .54740e+3 .69124e+3 .79609¢+3 .81664e+3
Bt .51604e+3 .51938e+3 .51938e+3 .60926e+3 71434e+3 .81960e+3
1 51213e+3 S51251et3 S51251et3 .59917e+3 .70329e+3 .81049¢+3
2 .49805e+3 .49805e+3 .50057e+3 .58103e+3 .68530e+3 .79348e+3
3 47453e+3 47453e+3 48176e+3 .55137e+3 .65603e+3 .76620e+3
4 .43368e+3 .43368e+3 .44905e+3 .49943e+3 .60537e+3 .72019e+3
5 .34814e+3 .34814e+3 .37947e+3 .38773e+3 .49978e+3 .63141e+3
6 .27518e+3 .27518e+3 .29254e+3 .33249e+3 45578e+3 .58481e+3
7 .24566e+3 .24566e+3 .25091e+3 31914e+3 44342¢e+3 .57459e+3
8 .18104e+3 .19133e+3 .19133e+3 .28532e+3 41071e+3 .55581e+3
9 .14446e+3 .16503e+3 .16503e+3 27148e+3 .39684e+3 .54946e+3
10 .85034e+2 .13249¢+3 .13251e+3 26427e+3 .38724e+3 .54844e+3
11 -.31833e+5 | .93008e+2 .93082e+2 .26060e+3 .37989%¢+3 .55059e+3

2

vy
Eae e
LR
R

Fig. 6
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The “g—w,;” curves have the
same fashion for the investigated
shells when only pressure is acting
(T=0°C) (Fig.7). The load
moments at which the natural

vibrations have been calculated are
shown in the figure. These moments
correspond to the load g¢ (i=1,11)
(Table 1). The applied pressure
causes a restructuring of both
frequency multiplicity and vibration
modes. The frequencies ®, and ,
become  double  when i>8.
Accordingly, the mode shape for the
frequency ®, becomes the simplest
(Fig. 6 (a)).

Preheating and pre-cooling of the
shell leads to small changes in the
frequencies (Table 2). In the case of
pre-cooling by 7 =-20°C, the mode
shapes are similar to ones shown in
Fig. 6. In the case of preheating by
T =+20°C, the mode shapes are
similar to the (b), (c), (a) shapes of
Fig. 6.

The “g—w;” curves have the

same fashion for the investigated shell in all cases of heating (Fig. 8). At
buckling domain, the mode shape is similar to the shape from Fig. 6 (a) for all
cases of heating.

Table 2
Natural frequencies for the heated panel ("w:m", g =0)

T°C ! ) 3 Wy @5

0 .51604e+3 | .51938e+3 | .51938e+3 | .60926e+3 | .71434e+3
+20 | .53017e+3 | .53028e+3 | .53151e+3 | .61665¢+3 | .71662¢+3
A0 +2.37 +2.10 +2.33 +1.21 +0.32
-20 49977e+3 | .50829¢+3 | .50838e+3 | .60211e+3 | .71205e+3
A -3.15 213 -2.12 -1.17 -0.32
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Conclusions

The finite element approach for determining the natural vibrations of shells
of an inhomogeneous structure is developed on the basis of a modified
isoparametric spatial finite element with polylinear shape functions. The
algorithm for modal analysis of the shells is based on the finite element method
for studying shells with geometric features throughout thickness. The
prestressed state of the deformed shell is taken into account at each stage of
thermo-mechanical loading.

An analysis of the stability and vibration of the spherical panel with the hole
is carried out. The effect on the frequencies and mode shapes of the shell of the
sequential action of temperature and pressure is investigated. We have shown
that the developed method is an effective tool for a comprehensive study of the
stability and vibrations of inhomogeneous shells of thin and medium thickness
under the action of thermo-mechanical loads.
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Fbaocenos B.A., Kpusenko O.I1.
BTPATA CTIHKOCTI TA KOJIUBAHHSI OBOJIOHKH 3 OTBOPOM IITIJI IEIO
TEPMOCHJIOBOI'O HABAHTAKEHHSI

VY craTTi BHKJIaJeHI OCHOBH METO/Y PO3B’s3aHHS CTATHYHMX 3a/1a4 T€OMETPUYHO HENiHIHOro
nehopMyBaHHS, BTPATH CTIMKOCTI Ta KOJIMBAaHb TOHKHX TEPMOIPYKHHX HEOJHOPIAHUX 000IOHOK 3i
CKJIaJHOI (OPMOIO CcepenHbOl MOBEPXHI, 3 T'€OMETPUYHHMH OCOOJIMBOCTAMU 33 TOBILIMHOIO, B
yMOBax [ii CKJIaJHOr0 TEPMOMEXaHIYHOIO HaBaHTKEHHSA. MeTox 3aCHOBaHHH Ha I'€OMETPHYHO
HENIHIHHUX ~ CHIBBIJHOIIGHHAX  TPHUBHUMIPHOI  TEPMOINPYXXHOCTI,  CKiHUCHHO-EJIEMEHTHOMY
¢dopmynroBaHHI 3a1a4i B IPUPOCTaX | BUKOPHCTAHHI MOMEHTHOI CXeMH CKIHUYCHHHX CJIEMEHTIB. 3a
MM METOZOM TOHKa 00OJIOHKA PO3TJISIIAETHCS SIK TPUBHUMIPHE TilO, IKE MOACIIOETHCS 110 TOBILIHMHI
OIHHM YyHIiBepcaJbHHUM mpocTopoBuM ckiHueHHHM enemeHtoM (CE). VHiBepcanbhuii CE
po3pobiieHuii Ha OCHOBI i3omapamerpuunoro mnpocroposoro CE 3 mominiHiiHUMH (yHKLisIME
dopmu U1l KOOpAMHAT i mepeMimieHb. MOXIHBOCTI MOAM(}IKOBAHOrO €JIeMEHTa PO3IIMPEHi 3a
paxyHOK BBEICHHS IOJATKOBHX 3MIHHMX [apamerpiB. Meroanka MOJANbHOIO —aHawi3y
HEOJHOPIHMX OOOJIOHOK 0a3yeThcsi Ha MIiAXO[i, 338 SKUM Ha KOXXKHOMY KpOLi TEPMOCHIIOBOI'O
HaBaHTAXXCHHS BPaXOBYIOThCS HAKOMHWYCHI Ha MOMNEPEIHIX KpPOKaxX HampyKeHHs. PospolOiieHa
METOJMKa [03BOJSIE KOMIUIEKCHO JOCHII[DKYBaTH TE€OMETPHYHO HeliHiiiHe aedopMyBaHHS Ta
CTIfKiCTh TOHKHX 1 CepeqHbOI TOBIIMHH MPYKHUX OOOJIOHOK HEOAHOPIAHOI CTPYKTYPH Ta BUBYATH
Maii KOJMBAaHHA OOOJOHKHM BiJHOCHO BiJJIKOBOrO He(OPMOBAHOTO CTaHy, LIO BHKIMKAHHN
MOBUIBHMM ~ CTATUYHHM  HABAaHTKCHHAM, 3  YpaxyBaHHSIM  BEIMKHX  IepeMilleHb i
HepeJHANPYKEHOro CTaHy. BikoHaHO aHai3 CTIHKOCTI Ta KOMMBaHb CHEPUIHOI MAHEIi 3 OTBOPOM.
JlociifkeHO BIUIMB IIOCHTIZAOBHOI [ii TEMUIOBHX 1 CHJIOBHX HAaBAaHTAXXCHb HA 4YacTOTH i (OpMH
KOJIIBAaHb 00OJIOHKH.

KarouoBi cioBa: mnpyxHa o000JIOHKa, OTBip, BTpaTa CTIHKOCTI, BJacHa YacroTa, (opma
KOJINBaHb, TEPMOCHJIOBE HABAHTAXKCHHSI, YHIBEPCAIbHUI CKIHICHHHUH €JIEMEHT.

Fbaocenos B.A., Kpusenko O.I1.
MOTEPS YCTOMYUBOCTHU U KOJIEBAHUSA OBOJIOYKH C OTBEPCTUEM MO/,
JEACTBUEM TEPMOCHJIOBOM HAI'PY3KH

B CTaTb€ M3JIOKEHBI OCHOBBI METOAA PCIICHHA CTaTHYCCKUX 3aJgady TCOMETPUYCCKU
HEJIMHEHHOro 1edopMHpOBaHHs, MOTEPH YCTOWYMBOCTH M KOJEOAHUH TOHKHX TEPMOYIPYIHX
HEOJHOPOJHBIX O000JIOYEK CO CIIOKHON (OPMOW CPEeAMHHON MOBEPXHOCTH, C T'€OMETPUUYCCKUMHU
OCOOGHHOCTSIMH IO TOJIUMHE, B YCIOBHAX ACHCTBUS CIIOKHOW TEPMOMEXaHMYECKOW Harpy3KH.
Meron OCHOBaH Ha I'€OMETPUYECKH HEJIMHEHHBIX COOTHOLIEHUAX TPEXMEPHOHW TEpMOYIPYIOCTH,
KOHCYHO-3JIEMEHTHOM (OPMYJIMPOBKE 3ajlayd B MPHPALICHUAX W HCIOJb30BAHUM MOMEHTHON
CXEeMBI KOHEYHBIX 3JIeMEHTOB. TOHKasi MepeMEHHOIH TOMLIMHBI 000JI0YKa CIOKHOH I'€OMETPHYCCKOIt
(hopMBI paccMaTpHBAECTCS COIVIACHO METOLY KaK TPEXMEpHOE Telo, KOTOPOEe MOAEIHPYETCS IO
TOJILMHE  OJHUM  YHHUBEPCAJIbHBIM  IPOCTPAHCTBEHHBIM  KOHEYHbIM  3neMeHToM  (KD).
VYuuBepcanbublii KD pa3paboTaH Ha OCHOBE H30IapaMeTpPUYECKOro mpocTpaHcTBeHHOro KO ¢
HOJMMIMHEHHBIME  GYHKIHMAMH  (GOpMBI UL KOOPAMHAT M HepeMelleHHd. Bo3amoxHoCTH
MOLll/l(bl/lLll/lpoBaHHOFO DJIEMCHTA pPaCIIMPEHBI 3a CYET BBCACHHUA HOIOJIHHUTCIBHBIX IMMEPEMEHHBIX
napameTpoB. MeToinka MOJAJIbHOIO aHaJIN3a 000JI0UKH 0a3upyeTcst Ha MOAXO0/E, KOrla Ha KaXK10M
mare TEPMOCHJIOBOIO HAarpyX€HUs Y4YUTBHIBAKOTCA HANPSOKCHUSA, HAKOIJICHHBIC Ha NPEAbIAYIIMX
marax. PaspaGoraHHas MeTOAMKa IO3BOSET KOMIUICKCHO —HCCICHOBATh I'EOMETPHYCCKU
HEJMHEeHHOe 1e()OpPMUPOBAHUE M YCTOHYMBOCTh TOHKHX M CPEIHEH TONIMMHBI YIPYTHX 000JI0YEK
HEOJHOPOJHONW CTPYKTYpBI, a TaKXkKe H3ydaTb Majble KojeOaHus OOOJIOYEK OTHOCHUTEIbHO
OTCYETHOr0 Ae(OPMUPOBAHHOTO COCTOSIHHSI, BBI3BAHHOI'O [TPOM3BOJIBHOI CTATHYECKOI HArpy3KOii, ¢
y4eToM OOJIbIIMX IEpeMELICHUH W INPEeJHANPSDKEHHOro  COCTOSHMS. BbinonHeH —aHanmu3
YCTOHYMBOCTH U KojiebaHuil cepuueckoil maHean ¢ ortBepcrieM. McciaemoBaHo BIMsSHUE
TI0CJIE/IOBATEILHOTO BO3I€HCTBUS TEIUIOBBIX U CHJIOBBIX HAarpy30K Ha 4acTOThl U (OpMbI KoJeOaHU
000J104KH.

KaroueBble cjoBa: ynpyras 000JI04Ka, OTBEPCTHE, MOTEPs YCTOWYMBOCTH, COOCTBEHHAsS
JacToTa, opma KojaeOaHuil, TepMOCHIOBas HAIPY3Ka, YHUBEPCAIbHBII KOHEUHBIH 3JIEMEHT.
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