DOI: https://doi.org/10.32347/2410-2547.2019.103.82-111

Searching for shear forces flows in arbitrary cross-sections of thin-walled bars: numerical algorithm and software implementation

Vitalina Yurchenko

Abstract


Development of a general computer program for the design and verification of thin-walled bar structural members remains an actual task. Despite the prevailing influence of normal stresses on the stress-strain state of thin-walled bars design and verification of thin-walled structural members should be performed taking into account not only normal stresses, but also shear stresses.

Therefore, in the paper a thin-walled bar of an arbitrary cross-section which is undergone to the general load case is considered as investigated object. The main research question is development of mathematical support and knoware for numerical solution for the shear stresses problem with orientation on software implementation in a computer-aided design system for thin-walled bar structures.

The problem of shear stresses outside longitudinal edges of an arbitrary cross-section (including open-closed multi-contour cross-sections) of a thin-walled bar subjected to the general load case has been considered in the paper. The formulated problem has been reduced to the searching problem for unknown shear forces flows that have the least value of the Castigliano’s functional. Besides, constraints-equalities of shear forces flows equilibrium formulated for cross-section branch points, as well as equilibrium equation formulated for the whole cross-section relating to longitudinal axes of the thin-walled bar have been taken into account.

A detailed numerical algorithm intended to solve the formulated problem has been proposed by the paper. The algorithm is oriented on software implementation in systems of computer-aided design of thin-walled bar structures. Developed algorithm has been implemented in SCAD Office environment by the program TONUS. Numerical examples for calculation of thin-walled bars with open and open-closed multi-contour cross-sections have been considered in order to validate developed algorithm and verify calculation accuracy for sectorial cross-section geometrical properties and shear stresses caused by warping torque and shear forces. Validity of the calculation results obtained using developed software has been proven by considered examples.


Keywords


thin-walled bar; arbitrary cross-section; shear forces flow; closed contour; graph theory; Castigliano’s functional; mathematical programming task; method of Lagrange multipliers; algorithm; software implementation

Full Text:

PDF

References


Dowell R. K., Johnson T. P. Closed-form shear flow solution for box–girder bridges under torsion // Engineering Structures. – №34, 2012. – p. 383–390.

Perelmuter A. V., Slivker V. I. Numerical structural analysis: models, methods and pitfalls. – Springer-Verlag Berlin Heidelberg, 2003. – 600 p.

Slivker V. I. Mechanics of structural elements. Theory and applications. – Springer-Verlag Berlin Heidelberg, 2007. – 786 p.

Lalin V. V., Rybakov V. A., Diakov S. F., Kudinov V. V., Orlova E. S. The semi-shear theory of V. I. Slivker for the stability problems of thin-walled bars // Magazine of Civil Engineering. – № 87(3), 2019. – C. 66 – 79.

Юрченко В. В. Проектирование каркасов зданий из тонкостенных холодногнутых профилей в среде SCAD Office // Magazine of Civil Engineering. – №8, 2010. – С. 38 – 46.

Jönsson J. Determiantion of shear stresses, warping functions and section properties of thin-walled beams using finite elements // Computer and Structures. – No. 68, 1998. – p. 393–410.

7. Tarjan R. Depth-first search and linear graph algorithms // SIAM Journal Computing. – №1, 1972. – p. 146 – 60.

8. Alfano G., Marotti de Sciarra F., Rosati L. Automatic analysis of multicell thin-walled sections // Computer and Structures. – №59, 1996. p. 641 – 55.

Waldron P. Sectorial properties of straight thin-walled beams // Computers and Structures. – Vol. 24, Issue 1, 1986. – p. 147 – 156.

Yoo C. H. Cross-sectional properties of thin-walled multi-cellular section // Computer and Structures. – №22, 1986. – p. 53–61.

Chai H.Yoo, Junsuk Kang, Kyungsik Kim, Kyoung C. Lee. Shear flow in thin-walled cellular sections // Thin-Walled Structures. – №49 (11), 2011. – p. 1341–1347.

Prokić A. Computer program for determination of geometrical properties of thin-walled beams with open-closed section // Computers and Structures. – №74, 2000. – p. 705–715.

Gurujee C. S., Shah K. R. A computer program for thin-walled frame analysis // Advances in Engineering Software. – No. 11, 1989. – p. 58 – 70.

Gajanan K.Choudhary, Karan M. Doshi. An algorithm for shear stress evaluation in ship hull girders // Ocean Engineering. – №108 (1), 2015. – p. 678–691.

Perelmuter A., Yurchenko V. Shear stresses in hybrid thin-walled section: development of detail numerical algorithm based on the graph theory // Proceedings of 3rd Polish Congress of Mechanics and 21st International Conference on Computer Methods in Mechanics. Short Papers. – Vol. 2, 2015. – p. 943 – 944.

Yurchenko V. Searching shear forces flows for an arbitrary cross-section of a thin-walled bar: development of numerical algorithm based on the graph theory // International journal for computational civil and structural engineering. – №15(1), 2019. – p. 153 – 170.

Юрченко В. В. Розподіл потоків дотичних зусиль вздовж замкнених контурів перерізу тонкостінного стержня: розробка числового алгоритму з використанням теорії графів // Ресурсоекономні матеріали, конструкції, будівлі та споруди. Збірник наукових праць. Вип. 30. – Рівне, 2015. – С. 306 – 316.

Юрченко В. В. Узагальнені секторіальні координати для довільного перерізу тонкостінного стержня: розробка числового алгоритму з використанням теорії графів // Ресурсоекономні матеріали, конструкції, будівлі та споруди. Збірник наукових праць. Вип. 31. – Рівне, 2015. – С. 538 – 549.

Рудь Д. Н., Юрченко В. В. Программная реализация поиска потоков касательных усилий в сечении тонкостенного стержня произвольной конфигурации // Сучасні методи і проблемно-орієнтовані комплекси розрахунку конструкцій і їх застосування у проектуванні і навчальному процесі: Тези доповідей другої міжнародної науково-практичної конференції, Київ, 2018. – С. 109 – 111.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Vitalina Yurchenko