DOI: https://doi.org/10.32347/2410-2547.2019.102.232-242

Application of the finite element method for calculating the thermal stress state of pneumatic tires

Yurii Kozub, Ivan Solodei

Abstract


The processes of deformation of some of the widely used  layered composite materials with elastomeric matrix, consisting of thin unidirectionally reinforced layers, or from alternating unidirectionally reinforced and isotropic layers are considered.The method of solving the problems of thermoelasticity of constructions from such materials is proposed, which is based on the finite element method.

To form of resolving equalizations of finite element method for layered solid with initial tensions the super element method is considered. For every layer of finite element the stiffness matrix is built on the basis of incremental theory of deformation.

The decision of task for the package of finite elements, that modeling the package of the layered construction, is taken to the decision of the system of equalizations in relation to moving of knots to the surfaces of package.

On the second stage of decision of task moving of knots is calculated to the border of division of layers.The components of tensor of tensions are calculated for every layer taking into account the temperature of layer.

The field of temperatures determined for all package on the basis decisions of task of heat conductivity.At the construction of matrix of heat conductivity an ideal thermal contact is assumed between layers.The function of internal heat source is calculated for every layer as average energy for the complete cycle of loading.The solution of the linked problem of thermoelasticity of a layered composite is obtained by the method of successive approximations.

The offered method is applied for the decision of task about thermoelasticity deformation and dissipative warming-up of pneumatic tires. Pressure in a tire is considered as an initial load.Loading is attached to the axis of wheel creates additional deformations of tire. The process of tire roll is considered as cyclic deformation.

Solution of the linked task of thermoelasticity is offered for over a large size tire

Dependences of temperature of dissipative warming up are got on frequency of vibrations and size of loading.The got results satisfactorily comport with experimental data.


Keywords


multilayered finite element; elastomer; rubber cord compo; thermoelasticity

References


Kasparov A.A. Uprugie harakteristiki i mehanika deformirovaniya tekstilnyih kordov / A.A. Kasparov // Geotehnicheskaya mehanika. – 1999. – # 11. – S. 69-83.

Rasteryaev Yu.K. Sostavnyie rezinokordnyie materialyi i mehanika ih deformirovaniya / Yu.K. Rasteryaev, G.N. Agaltsov // Geotehnicheskaya mehanika. – 2005. – # 60. – S. 200-248.

Rasteryaev Yu.K. Teoriya deformirovaniya sostavnyih anizotropnyih rezinokordnyih materialov, ispolzuemyih v karkasah pnevmaticheskih shin / Yu.K. Rasteryaev, A.A. Kasparov // Geotehnicheskaya mehanika. – 1999. – # 11. – S. 84-100.

Bazhenov V.A. Zastosuvannya metodik prognozuvannya pruzhnih harakteristik kompozitnogo materIalu v skInchennoelementnIy modelI obolonki neodnorIdnoYi strukturi / V.A. Bazhenov, O.P. Krivenko // OpIr materIalIv I teorIya sporud. – 2017. – Vip. 98. – S. 3-15.

Belkin A.E. Elementyi avtomatizirovannogo proektirovaniya i raschet napryazhennogo sostoyaniya radialnyih shin / A.E. Belkin, A.O. Belikov, N.L. Narskaya , A.V. Ulyashkin // Kauchuk i rezina – 1993. – #2. – S.11-14.

Belkin A.E. Priblizhennoe reshenie kontaktnoy zadachi ob obzhatii shinyi na ploskuyu ili tsilindricheskuyu opornuyu poverhnost / A.E. Belkin, A.V. Ulyashkin // Izv. Vuzov Mashinostroenie. – 1993. – #10. – S.14-21.

Belkin A.E, Modelirovanie statsionarnogo teplovogo sostoyaniya radialnoy shinyi, vyizvannogo dissipativnyim razogrevom / A.E. Belkin,N.L., N.L. Narskaya // Vestnik MGTU im. N.E.Baumana. – 2000. – #2(39).– S. 19-31.

Biderman V.L. Voprosyi rascheta rezinovyih detaley / V.L. Biderman // Raschetyi na prochnost. – 1958. – Vyip. 3. – S. 40-88.

Blumberg N.N. Issledovanie napryazhennogo sostoyaniya uprugih mnogosloynyih konstruktsiy metodom konechnyih elementov / N.N. Blumberg // V kn.: Vopr. elektrodinamiki i mehaniki sploshnyih sred. Riga. 1976. Vyip.2. S. 117-134.

Nenahov A.B. Konstruirovanie shin s ispolzovaniem raschetnyih metodov / A.B. Nenahov, S.L. Sokolov, L.R. Galperin // Tr. 14-go Simp. «Problemyi shin i rezinokordnyih kompozitov». – 20-24 oktyabrya 2003. – S. 100-106.

Kasparov A.A. Raschetnyie issledovaniya nizkoprofilnyih shin spetsialnogo naznacheniya / A.A. Kasparov, I.V. Veselov, S.L. Sokolov // Izvestiya VUZov. Mashinostroenie. – 2016. – #11 (680). – S. 34-39.

Sokolov S.L. Raschet tsiklicheskoy dolgovechnosti pnevmaticheskih shin. / S.L. Sokolov, A.B. Nenahov // Sb. dokl. 25-go Simp. « Problemyi shin, RTI i elastomernyih kompozitov». – 13-17 oktyabrya 2014. – S. 320–332.

Abdrahimov R.R. Mnogaspitsevaya ezvozduschnaya shina iz kompozita. Teplovoe sostoyanie / R.R. Abdrahimov, A.V. Ignatova, S.B. Sapozhnikov // Vestnik YuUrGU. Seriya «Mashinostroenie». – 2017. – T. 17, # 1. – S. 5–12

Berezhnoy D.V. Universalnyiy konechnyiy element dlya rascheta kombinirovannyih konstruktsiy. / D.V. Berezhnoy, M.K. Sagdatullin, A.A. Sachenkov // Vestnik Kazanskogo gosudarstvennogo tehnologicheskogo universiteta. – 2012. – #17. – S.150-157.

Berezhnoy D.V. Universalnyiy konechnyiy element dlya rascheta mnogosloynyih tonkostennyih konstruktsmy slozhnoy geometrii / D.V. Berezhnoy, L.R. Fahrutdinov, A.K. Gabibova // Tr. Mezhdunar. konf. "Setochnyie metodyi". – 24-29 sentyabrya 2014. – S.139-147.

De Sousa R.J.A., Cardoso R.P.R., Valente R.A.F., Yoon J.-W., Gracio J. J., Jorge R.M.N. A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness: Part I - geometrically linear applications // Int. J. for Numerical Methods in Engineering. 2005. – V. 62,№7. – P. 952–977.

Sze K.Y. Three-dimensional continuum finite element models for plate/shell analysis // Prog. Struct. EngngMater. – 2002. – V. 4. – P. 400–407.

Metod konechnyih elementov v vyichislitelnom komplekse «MIRELA ». / V.V. Kirichevskiy., B.M. Dohnyak, Yu.G. Kozub, S.I. Gomenyuk, R.V. Kirichevskiy, S.N. Grebenyuk/ – K.: Naukova dumka, 2005. – 402s.

Gondlyah O.V. Utochneniy skInchenniy element koristuvacha dlya modelyuvannyav ABAQUS protsesIv rozsharuvannya bagatosharovih konstruktsIy/ O.V. Gondlyah // NaukovI vIstI NTUU "KPI". MaterIaloznavstvo I mashinobuduvannya. – 2012.– #2. –S. 114-122.

Saharov A.S. Modifikatsiya metoda Rittsa dlya rascheta massivnyih tel na osnove polinomialnyih razlozheniy s uchetom zhestkih smescheniy / A.S. Saharov // Soprotivlenie materialov i teoriya sooruzheniy. — 1974. — # 23. — S. 47—52.

Dohnyak B.M. Raschet predvaritelno napryazhennyih konstruktsiy iz elastomerov / B.M. Dohnyak, Yu.G. Kozub // Tr. 13-go Simp. «Problemyi shin i rezinokordnyih kompozitov». – M.: NII shinnoy promyishlennosti. - 14-18 oktyabrya 2002. - S.119-123.

Kirichevskiy V.V. Nelineynyie zadachi termomehaniki konstruktsIy iz slaboszhimaemyih elastomerov / V.V. Kirichevskiy, A.S. Saharov. – K.: Budivelnik, 1992. – 216s.

Sheshenin S.V. Primenenie modeli vyazkouprugosti Maksvella dlya rezinokordnogo kompozita / S.V. Sheshenin, P.V. Chistyakov, I.M. Zakalyukina // Internet-zhurnal «NAUKOVEDENIE» Tom 9, #4 (2017) http://naukovedenie.ru/PDF/55TVN417.pdf.

Skornyakov E.S. Teoriya modelirovaniya sverhkrupnogabaritnyih shin / E.S. Skornyakov // Dneprpetrovsk, DGU. 1992. 32s.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Yurii Kozub, Ivan Solodei