DOI: https://doi.org/10.32347/2410-2547.2018.101.111-120

Mathematical modeling of the processes of development of trunk cracks in the bodies of rotation of the complex structure taking into account the form-modification

Viktor Bazhenov, Yurij Maksimyuk

Abstract


The step-by-step algorithm for determining of the trajectory of initial crack propagation in the bodies of rotation of the complex structure using FEM was developed and verified on the test examples. The result of calculation of the responsible object of modern technology are shown.

Determining of the fracture mechanics parameters is an important, but partial problem of fracture mechanics. In practice, there are cases when a small initial small crack is known and it is necessary to determine the destruction conditions of the structure - the critical length of the crack at a given load. At the same time, the correctness of determining of the trajectory of initial crack propagation depends largely on the reliability of the calculation of fracture mechanics parameters along the trajectory. If it is not coinciding with the real one, it can lead to an incorrect assessment of the bearing capacity of the structure as a whole.

It should be noted that a small number of papers are devoted to the modeling of the crack development using the FEM [3]. The effectiveness of the method in this case depends to a large extent on the effectiveness of the finite element base and the methods of determining of the fracture mechanics parameters. In this paper, the focus is on the use of universal finite element [7], which allows to optimize the FEM discrete model when calculating the bodies of a complex structure. Determination of the fracture mechanics parameters is realized by the modified method of reactions, the effectiveness of which in the case of mixed fracture is demonstrated in the works [2, 6].

In this paper, we arrived at solutions of the new structure mechanics problems about the effect of form-modification on the life-time value and the fracture resistance of the structural elements of modern industry. It has been found that despite relatively small changes in the values of stress-strained state parameters the life-time of the stop valve has increased compared with the geometric linear calculation, which is essential for determining of the lifetime of this object.


Keywords


crack resistance; shape change; body of rotation; modified reaction method; linear and nonlinear parameters of fracture mechanics; connecting node of immersion container; stop valve of steam turbine

References


Bazhenov V.A. Matrytsia zhorstkosti i vektor vuzlovykh reaktsii skinchennoho elementa dlia rozviazannia prostorovykh zadach termoviazkopruzhnoplastychnosti NMSE (Rigidity matrix and vector of knot reactions of a finite element for solving spatial problems of thermally elastic plasticity of NMVOC)/ V.A. Bazhenov, S.O. Pyskunov, I.I. Solodei ta in. // Opir materialiv i teoriia sporud: nauk.-tekhn. zbirnyk–K.:KNUBA, 2005. – Vyp. 76. – S. 3–26.

Bazhenov V.A. Reshenye lyneinыkh y nelyneinыkh prostranstvennыkh zadach mekhanyky razrushenyia na osnove poluanalytycheskoho metoda konechnыkh эlementov / Bazhenov V. A., Huliar A.Y., Pyskunov S.O. [y dr.]: Soobshchenye 1. Teoretycheskye osnovы y yssledovanye эffektyvnosty konechno-эlementnoi metodyky reshenyia prostranstvennыkh zadach mekhanyky razrushenyia (Solution of linear and nonlinear spatial problems of fracture mechanics based on the semi-analytical finite element method. Report 1. Theoretical foundations and investigation of the effectiveness of the finite-element method solving spatial problems of fracture mechanics)// Problemы prochnosty. – 2011. −Vyp. 1. – S. 27 39; Soobshchenye 2. Metodyka opredelenyia ynvaryantnoho J-yntehrala v dyskretnыkh modeliakh MKЭ (Message 2. Method of determining the invariant J-integral in discrete models of the FEM) // Problemы prochnosty. 2011. Vyp. 2. – S. 17-32.

Bazhenov V.A. Napivanalitychnyi metod skinchennykh elementiv v zadachakh ruinuvannia prostorovykh til: Monohrafiia (The napalanal method of skynchnyh elementov in problems ruinuvnya prostorovih til: Monograph) / V.A. Bazhenov, O.I. Huliar, S.O. Pyskunov, O.S. Sakharov – K.: KNUBA, 2005. – 298 s.

Huliar A.Y. Realyzatsyia metoda podatlyvosty na osnove MKЭ dlia setok, ne sovpadaiushchykh s traektoryei treshchynы (Implementation of the method of compliance on the basis of FEM for grids that do not coincide with the crack trajectory) / A.Y. Huliar, T.A. Kushnyrenko, A.S. Sakharov // Soprotyvlenye materyalov y teoryia sooruzhenyi. – 1981. – Vыp.38. – S.42–46.

Yyda S. Skorost rasprostranenyia treshchyn v plastynakh yz splava 7075-T6 pry tsyklycheskom rastiazhenyy y poperechnom sdvyhe (The rate of propagation of cracks in the plates of alloy 7075-T6 under cyclic tension and transverse shear) / S. Yyda, A. Kobaiasy // Tr. Amer. ob-va ynzhenerov-mekhanykov. Ser. D. – 1969. – № 4.– S. 210–214.

Maksimyuk Yu.V. Vyznachennia trishchynostiikosti visesymetrychnykh til z urakhuvanniam formozminennia (Determination of the friction resistance of axisymmetric bodies, taking into account the shape change)/ Yu.V. Maksimyuk // Opir materialiv i teoriia sporud: nauk.-tekhn. zbirnyk / –K.:KNUBA, 2018. −Vyp.100. – S. 202 213.

Maksimyuk Yu.V. Rozrakhunkovi spivvidnoshennia universalnoho skinchenoho elementa na osnovi momentnoi skhemy skinchenykh elementiv (Calculated ratios of a universal finite element based on a finite element timing scheme) / Yu.V. Maksimyuk // Opir materialiv i teoriia sporud: nauk.-tekhn. zbirnyk / –K.:KNUBA , 2015. − Vyp.94. – S. 244 251.

Savruk M. P. O raschete statycheskoi traektoryy rasprostranenyia treshchyn (About the calculation of the static trajectory of crack propagation) / M.P. Savruk, P.N. Osyv // Problemы prochnosty. – 1982. – №11. – S. 19–23.

Еrdohan F.O rasprostranenyy treshchyn v plastynkakh pod deistvyem nahruzky v ploskosty y poperechnoho sdvyha (On the propagation of cracks in the plates under the action of load in the plane and transverse shear) / F. Еrdohan, Dzh. Sy // Trudы amer. ob-va ynzh.-mekh. Ser. D. – 1963. – T. 85. – № 4. – S. 122–126.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Viktor Bazhenov, Yurij Maksimyuk