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Chaotic behaviour of dynamical systems, their routes to chaos, and the intermittency are
interesting and investigated subjects in nonlinear dynamics. The studying of these phenomena in non-
smooth dynamical systems is of the special scientists’ interest. In this paper we apply relatively
young mathematical tool — continuous wavelet transform CWT — for investigating the chaotic
behavior and intermittency in particular in strongly nonlinear non-smooth discontinuous 2-DOF
vibroimpact system. We show that CWT applying allows to detect and determine the chaotic motion
and the intermittency with great confidence and reliability, gives the possibility to demonstrate route
to chaos via intermittency, to distinguish and analyze the laminar and turbulent phases.
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surface of wavelet coefficients.

1. Introduction

The wavelet transform (WT) is a relatively new mathematical tool for
analysis or synthesizing a wide variety of generic signals at different frequencies
and with different resolution. WT arose in 80-th years of XX century. Now it is
state-of-art technique for nonstationary signals analysis. There are quite a few
articles and books and textbooks written on them [1-6]. There is developed
Software: Wavelet Toolbox in Matlab, Mathcad and so on [7, 8].

Mathematical transformations are applied to signals to obtain a further
information from that signal that is not readily available in the raw signal. There
is number of transformations that can be applied, among which the Fourier
transforms (FT) are probably by far the most popular.

The FT gives the frequency information of the signal, which means that it
tells us how much of each frequency exists in the signal, but it does not tell us
when in time these frequency components exist. This information is not required
when the signal is so-called stationary. When the signal is not stationary it is
suitably to use the WT, more exactly when the time localization of the spectral
components are needed, a transform giving the time-frequency representation of
the signal is needed. The Wavelet transform is a transform of this type. It
provides the time-frequency representation. (There are other transforms which
give this information too, such as short time Fourier transform, Wigner
distributions, etc.). Wavelet transform is capable of providing the time and
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frequency information simultaneously, hence giving a time-frequency
representation of the signal. The WT was developed as an alternative to the short
time Fourier Transform (STFT).

Like the FT the continuous wavelet transform (CWT) uses inner products to
measure the similarity between a signal and an analyzing function. In the FT the
analyzing functions are the complex exponents e/ . The resulting transform is a
function of a single variable ®. In the STFT the analyzing functions are

Jjoot

windowed complex exponentials w(¢)e’™ , and the result is the function of two

variables. The STFT coefficients F(w,t) represent the match between the signal

and a sinusoid with angular frequency ® in an interval of a specified length
centered at t.
In CWT the analyzing function is a wavelet y. The CWT compares the

signal to shifted and compressed or stretched versions of a wavelet. Stretching or
compressing a function is collectively referred to as dilatation or scaling and
corresponds to the physical notion of scale. By comparing the signal to the
wavelet at various scales and positions we obtain a function of two variables.
There are many different admissible wavelets that can be used in the CWT.
While it may seen confusing that there are so many choices for the analyzing
wavelet it is actually a strength of wavelet analysis. Depending on what signal
features we are trying to detect, we are free to select a wavelet that facilitates our
detection of that feature.

We apply the continuous wavelet transform CWT in order to study the
chaotic behavior in general and route to chaos via intermittency in particular for
vibroimpact system.

Chaotic behavior occurs in many phenomena: mechanical, engineering,
experimental physical, medical, biology, and so on. The studying of such
phenomena was begun in 80-th years of XX century too when the behaviour of
different dynamical systems began to be described by nonlinear differential
equations. Now the theory of chaotic vibrations is well developed and is
continuing to develop further. There are many textbooks, monographs and papers
about it [9, 10]. There are many special journals devoted to different questions
on nonlinear dynamics in general and on chaos in particular (for example, an
Interdisciplinary Journal of Nonlinear Science “Chaos, Solitons & Fractals”, an
International Journal of Nonlinear Dynamics and Chaos in Engineering Systems
“Nonlinear Dynamics”). The numerous conferences are holding in many
countries of the world (for example, 7th International conference on Nonlinear
Science and Complexity (NSC2018) in México, Fourth International Conference
on Recent Advances in Nonlinear Mechanics RANM 2019 in Poland).

Vibroimpact system is strongly nonlinear dynamical system, its motion is
describing by nonlinear differential equations. So its behaviour is typically
nonlinear one: the stable motion regions are changing by unstable ones, periodic
motion is replacing by quasiperiodic one, which then turns into chaotic [10-12].
The analysis gets complicated by the non-smoothness of vibroimpact system
because its motion equations are discontinuous due the impacts. It is known three
main routes to chaos in nonlinear systems — the Feigenbaum route via period
doubling, quasiperiodic route to chaos [13,14], and route to chaos via
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intermittency [15]. This later route has big complexity for analysis. At first it
occurs much less then route via period doubling (which occurs the most often
and is studied in the best way). At second “the catching” of intermittency in
system motion is not such simple task. The continuous wavelet transform CWT
is useful exactly for this task solving.

The chaotic motion and the intermittency in different mechanical and
physical systems were studied in [16-22] with WT applying.

The aim of this paper is: to apply the wavelet transform WT for studying of
vibroimpact system motion and to show its use for intermittency “catching” and
chaoticity anlysis.

2. The initial equations

For this goal achievement we consider the model of 2-DOF two-body
vibroimpact system which we have studied it our previous works [13, 14, 23]
and have obtained the-frequency response [23] in wide range of control
parameter by parameter continuation method (Fig. 1). Therefore here we’ll give
only short model description.
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Fig. 1. Vibroimpact system model and amplitude-frequency response

This model is formed by the main body m1 and attached one m,, which can
play the role of percussive or non-percussive dynamic damper. Bodies are
connected by linear elastic springs with stiffness &, and &k, and dampers with
damping coefficients ¢; and ¢,. (The damping force is taken as proportional to
first degree of velocity with coefficients ¢; and c;.)

The differential equations of its movement are:
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External loading is periodic one: F(¢)=Pcos(wt+¢,), T =2% is its

period.

Impact is simulated by contact interaction force F,, according to contact

quasistatic Hertz’s law:



ISSN 2410-2547 17
Omip MatepianiB i Teopist copyx/Strength of Materials and Theory of Structures. 2018. Ne 101

Foo(2)= K[H(2)z(0)]",

_ 2 Y 2
5_1 ,U1’52:1 H ()

4 q
K=2— "2 §= :
3(,+6,VA+B = ETm Eyr

where z(f) is the relative closing in of bodies, z(f)=x, —x;, A, B, and g are
constants characterizing the local geometry of the contact zone; p, and E, are
respectively Poisson’s ratios and Young’s modulus for both bodies, H(z) is the
discontinuous step Heviside function. The numerical parameters of this system
are following:

m; =1000 kg, ©,=6.283 rad-s”, &=0.036, E;=2.1-1011 N'm*, p,;=0.3,

my= 100kg, ©,=5.646rads”, &=0.036, E,=2.1-1011 N'm*, p,=0.3,

P=500 N, A=B=0.5m", g=0.318.

3. Chaeticity analysis

Here we consider the region DE where the main (1,1)-periodic regime
(regime with period 17 and 1 impact per cycle) is unstable one. Let us have a
look what regimes are realising at this region. The largest Lyapunov exponent
dependence on control parameter  is depicted at Fig.2 [24].
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Fig.2. The largest Lyapunov exponent dependence on control parameter ®

The regions ® < 6.07 rad's” and ® > 6.29 rad's™ correspond to periodic
motions because the largest Lyapunov exponents are negative. The region
6.07 rads'<<6.29 rad-s” corresponds to chaotic regime because the largest
Lyapunov exponents are positive. How is the transition to chaos carried out?
Here we‘ll not discuss this problem. We’ll tell only that (1,1)-regime under
©=6.07 rad's”" and ®=6.29 rads” becomes the (2,2)-regime (regime with period
2T and 2 impact per cycle), under ®=6.3 rad-s™ it becomes the (2,3)-regime. We
don’t observe the further period doubling, Feigenbaum’s route to chaos doesn’t
realize under these frequencies. But then we observe intermittency under some
frequencies inside the chaotic motion. This phenomenon will be described in
sec.4.

Now we’ll look more in details at chaotic motion.

Let us look how the continuous wavelet transform (CWT) helps to detect this
oscillatory regime.

At first for the comparison we’ll show how (1,1) and (2,2) regimes look at
wavelet surface projection.

At Fig. 3 and Fig. 4 the time series and wavelet surface projections for these
regimes are depicted. We fulfilled CWT with Morlet wavelet using.
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It is well seen one high frequency at Fig. 3 which is constant in time, it
doesn’t change in time. At Fig. 4 there are two high frequencies which are
constant in time, they don’t change in time.
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Fig. 3. Time series and wavelet surface projection for (1,1)-regime under o= 6.06 rad-s™ (Color
online)
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Fig. 4. Time series and wavelet surface projection for (2,2)-regime under =6.07 rad-s” (Color
online)

At Fig. 5 the surface of wavelet coefficients for (1,1)-regime is shown for
comparison. We see well that one high frequency is constant in time, it doesn’t
change in time.
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Fig. 5. Surface of wavelet coefficients (3D plot) for (1,1)-regime under ®=6.06 rad-s” (Color online)

Here and further all plots are fulfilled for attached body. Its mass is much less
the main body mass. So its oscillatory amplitudes are more big and their changes
are seen better, so the plots are more obvious ones.

For chaotic motion we show time series and wavelet surface projection at
Fig. 6.
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Fig. 6. Time series and wavelet surface projection for chaotic regime under o= 6.20 rad-s”
(Color online)
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Fig. 7. Phase trajectories and Poincare map for
chaotic motion under ®=6.2 rads’
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Fig. 8. Surface of wavelet coefficients (3D plot) for chaotic motion under »=6.2 rad-s™ (Color online)

We see that CWT gives well and reliable information about chaotic motion.

4. Intermittency “catching”

We observed intermittency inside the chaotic motion. Let us have a look at
this phenomenon more in details.

Intermittency was discovered by French scientists Yves Pomeau and Paul
Manneville [15] in 1980 year. They had written:”...the fluctuations remain
apparently periodic during long time intervals (which we’ll call “laminar phases”
but this regular behavior seems to be randomly and abruptly disrupted by a
“burst” on the time record. This “burst” has a finite duration, it stops and a new
laminar phase starts and so on”. In other words one observe long periods of
periodic motion with bursts of chaos under one value of control parameter that is
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external load frequency that is the zones of turbulent and laminar motion
alternate in such regime under one frequency value. As one varies a control
parameter the chaotic bursts become more frequent and longer.

We’ll  show the intermittency which we  observe  under
6.1rad-s" <@w<6.14rad-s'. At Fig. 9 the time series and wavelet surface
projection for this regime are depicted under w=6.13 rad-s™.
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Fig. 9. Time series and wavelet surface projection for intermittency regime under ©=6.13 rad-s"
(Color online)
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Fig. 10. Time series and wavelet surface projection for intermittency regime under m=6.13 rad-s™
(region inside red oval at Fig. 9)

It is well seen the regions where chaotic motion and it’s high and low
frequencies are interrupted and only one high frequency remains.

At Fig. 10 we show the small region that is picked out by red oval. At this
Fig. we see very obviously the sharp change of chaotic motion into periodic one.

The surface of wavelet coefficients is shown at Fig. 11. We see very
obviously how chaotic motion with many different frequencies is changing by
the periodic motion with only one high frequency.



22 ISSN 2410-2547
Omip MatepianiB i Teopist copyn/Strength of Materials and Theory of Structures. 2018. Ne 101

Absolute Values of Cab Coefficients fora= 1030507090 .

COEFS

4 3000

4000 time (or space) b
scales a

Fig. 11. Surface of wavelet coefficients (3D plot) for intermittency under ©=6.13 rad-s” (Color
online)

At Fig. 12 the phase trajectories and Poincare maps are shown for regions of
chaotic (turbulent phase) and periodic (laminar phase) motions under
intermittency. These plots underline the regimes changing and confirm and give
the confidence in motion periodicity at this region.
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Fig. 12. Phase trajectories and Poincare maps for the regions of chaotic and periodic motions under
intermittency (0=6.13 rad-s™)

Thus we see that surfaces of wavelet coefficients and their projections
obtained by continuous wavelet transform CWT give the possibility to find and
“catch” the intermittency with great confidence and reliability.

In [21] the authors study intermittency in Lorenz model also by CWT using.
We succeeded in finding the intermittency in nonsmooth strongly nonlinear
vibroimpact system. The CWT was very useful for this studying.
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4. Conclusions

The continuous wavelet transform CWT allows to detect and determine the
chaotic motion and the intermittency with great confidence and reliability.
Wavelet transform applying gives the possibility to demonstrate the route to
chaos via intermittency and to distinguish and analyze the laminar and turbulent
phases. The plots of wavelet coefficients surfaces and their projections give very
obvious presentation of these regimes, especially the color plots online. The
wavelet theory and existing Software are very useful for these phenomena
studying.
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Baoicenos B.A., Ilocopenosa O.C., [locmuixosa T.I., Jlykbsanuenxo O.O.
AHAJII3 XAOTUYHOI MOBEJTHKY BIBPOYJAPHOI CUCTEMU 3
BUKOPUCTAHHSM BEWBJIET IIEPETBOPEHHSI

XaoTH4yHA TOBEMIHKA JWHAMIYHUX CHCTEM, CIIeHapil iXHIX NepexoiiB [0 Xaocy, SBHILE
MEPEeMiKHOCTI — 1e € cdepa HETiHIHOI AWHAMIKY, IO MKUPOKO JOCIIKYEThCS BUCHUMH PI3HUX
kpaiH. Oco0JMBY IiKaBiCTh BHKIMKA€ BUBUCHHS IMX SBUIN B HEINIAJKUX JUHAMIYHHAX CHCTEMaX,
SKAMH 1 € BiOpoymapHi cucTemMu. B milf CcTaTTi MH BHKOPHCTOBYEMO BIiTHOCHO MOJIOIMH
MaTeMaTHYHUH amapatT — OesnepepBHe BelBier neperBopenus CWT — s qociiDkeHHs XaOTHIHOT
MOBEAIHKH Ta 30KpeMa IEepeMDKHOCTI B CHJIBHO HeNiHiffHOi Hernankiii pospuBHHI BiOpoymapHiit
CHCTeMi 3 JBOMA CTYIHSMH BiIbHOCTI. MU moka3yemo, mo 3actocyBanHs CWT nosBoisie yneBHEHO
Ta HaJiHO BH3HAYNTU XAOTHYHY IOBEIIHKY Ta IEPEMIXKHICTb, Ja€ MOXIIMBICTh JEMOHCTPYBATH
CIeHapill Hepexomy 10 Xaocy duepe3 MEepeMiKHICTh Ta PO3pI3HIOBATU i aHaNi3yBaTH JIaMiHapHY i
TypOyIeHTHY (ha3u.

KarwuoBi ciioBa: BiOpoymapHa cucTeMa, XaOTHYHA IIOBEAIHKA, MEPEMIXHICTh, Oe3lepepBHE
BEIBIIET TEPETBOPEHHS, TIOBEPXHsI BEHBIET KOSDII[iEHTIB.

UDC 539.3

Bazhenov V.A., Pogorelova O.S., Postnikova T.G., Lukianchenko O.0. Wavelet transform using for
analysis of vibroimpact system chaotic behavior // Strength of Materials and Theory of Structures:
Scientific-and-technical collected articles — Kyiv: KNUBA, 2018. — Issue 101. — P. 14-25.

Chaotic behaviour of dynamical systems, their routes to chaos, and the intermittency are
interesting and investigated subjects in nonlinear dynamics. The studying of these phenomena in non-
smooth dynamical systems is of the special scientists’ interest. In this paper we apply relatively
young mathematical tool — continuous wavelet transform CWT — for investigating the chaotic
behavior and intermittency in particular in strongly nonlinear non-smooth discontinuous 2-DOF
vibroimpact system. We show that CWT applying allows to detect and determine the chaotic motion
and the intermittency with great confidence and reliability, gives the possibility to demonstrate route
to chaos via intermittency, to distinguish and analyze the laminar and turbulent phases.
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Baosicenos B.A., Ilozopenosa O.C., Ilocmuixosa T.I., Jlykeanuenko O.O. AHaJXi3 Xao0THYHOI
NOBeJiHKH BiGpoyAapHOI cHCTeMH 3 BUKOPHCTAHHSM BeiiBjeT nepeTBopeHHs // Omip MaTepiaiiB
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nepemigicHocmi — ye € cepa HemniHiiHOT OUHAMIKY, WO WUPOKO OOCHIONCYEMbCS BYEHUMU PI3HUX
Kpain. Ocobaugy yikasicmv GUKIUKAE SUGHEHHS YUX SGUW 6 He2NAOKUX OUHAMIYHUX CUCMEMAX,
AKuMU I € 6IOpoydapHi cucmemu. B yiti cmammi Mu SUKOPUCIOBYEMO BIOHOCHO MOIOOUL
Mmamemamuynuil anapam — 6e3nepepgne geiigiem nepemeopenna CWT — ona OocuiodcenHs
XAOMUYHOI NOBEOIHKU mMa 30KpemMa NepeMidDCHOCH 6 CUNbHO HeNiHIUHOI He2naoKitl po3pueHuil
6i6poydapniii cucmemi 3 0soma cmynuamu eitbHocmi. Mu nokasyemo, wo 3acmocysauns CWT
0036014€ ynesHeHo mMa HAOIIHO GUBHAYUMU XAOMUYHY NOGEOIHKY MdA NePeMidcHICmb, 0ae
MOIACTUBICTNG OEMOHCIPYBAMIU CYeHAapill nepexo0y 00 XAoCy yepe3 NepemisicHiCmb ma po3pizHioeamu
i ananizysamu 1amiHapHy i mypoyieHmuy gasu.

In. 12. bibmior. 24 Ha3B.
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