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Abstract. The article is devoted to a further analysis of the natural vibrations of inhomogeneous
shells under the action of static loads. The method of investigation is based on a unified methodology
that combines the problems of static stability and the vibrations of elastic shells. The problems of
natural vibrations take into account the presence of a prestressed state of the shell structure from the
action of static loads. The presence of a static load significantly affects the spectrum of the natural
frequencies of the shell. This approach allows us to determine the critical load by the dynamic
criterion.

The method of investigating of inhomogeneous shells is based on the uniform methodological
positions of the 3-d geometrically nonlinear theory of thermoelasticity and the finite-element method
in the form of the moment finite-element scheme. So, a thin shell is considered by this method as a
three-dimensional body which is modeled throughout the thickness by one isoparametric solid finite
element with multilinear shape functions.

Two nonclassical hypotheses are used to describe the stress—strain state of a thin inhomogeneous
shell. The kinematic hypothesis of deformed straight line in the thickness direction: though stretched
or shortened during deformation, a straight segment along the thickness remains straight. This
segment is not necessarily normal to the mid-surface of the shell. The displacements are assumed
distributed linearly along the thickness, which is conventional in the theory of thin shells. The static
hypothesis compressive assumes that the stresses in the fibers are constant throughout the thickness
of the shell.

Modal analysis of a shallow ribbed panel demonstrates the effectiveness of the developed
method. The natural frequencies and mode shapes are determined at each increment of static loading.

Keywords: thin elastic shell, rib, buckling, natural vibrations, static load.

Introduction. Thin-walled shell structures are widely used in many branches
of modern engineering. Problems of stability and natural vibrations of shallow
panels are classical in the theory of thin elastic shells. Numerous literatures are
devoted to their study [1-14]. Methods and algorithms for solving nonlinear
stability problems and determining the parameters of natural vibrations are
investigated on this type of shells, mainly of constant thickness. The shells are
designed step-variable thickness (reinforced with ribs and overlays) to increase
the overall rigidity of the thin-walled structure (and, correspondingly, its load-
bearing capacity) [1-4, 10-12]. Static loads significantly affect both the stress-
strain state of the structure and its dynamic characteristics, which include
frequencies and forms of natural vibrations [5-8, 15, 16]. But the investigation of
the static load effect on the vibrations of shells even of constant thickness is a
difficult and insufficiently studied problem of structural mechanics. In addition
the determination of natural frequencies and forms of small vibrations of the
structure is a necessary element of investigation the behavior of shells.

1 Statement of the problem and method of investigation. The purpose of the
article is to use the method developed in [5] for calculating the natural frequencies
and forms of the mode of thin rim shells, taking into account the action of the static
load. The approach developed in [5] allows us to investigate comprehensively
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geometrically nonlinear deformation and buckling of thin and medium thickness
elastic shells of an inhomogeneous structure [1-4] and to analyze small vibrations
of shells with respect to a reference deformed state caused by a static load taking
into account large displacements and pre-stressed states.

The finite-element method [1-4] is constructed on the basis of geometrically
nonlinear relations of the three-dimensional theory of thermoelasticity, the
positions of the moment finite-element scheme (MFES) and the application of
the universal spatial finite element (FE) to modelling thin shells. We
approximate a thin shell by one spatial FE throughout the thickness to develop a
finite-element shell model. This approach is effective for solving problems of
nonlinear deformation, buckling, and natural vibrations of thin shells [1-5, 9, 17-
22]. The structural elements of an inhomogeneous shell require that the FE be
universal: it should be eccentrically arranged relative to the mid-surfaces of the
casing, it should be possible to vary the thickness of the lateral edges of the FE;
the lateral edges of the neighboring FEs should be in continuous contact; and it
should be possible to model sharp bends in the shell.

The problem of nonlinear deformation, buckling, and postbuckling behavior
of inhomogeneous shells is solved by a combined algorithm that employs the
parameter continuation method, a modified Newton—Kantorovich method, and a
procedure for automatic correction of algorithm parameters [1,2]. The
justification of the reliability of the obtained calculation results is based on a
study of the convergence of finite-element solutions and their comparison with
known analytical and numerical results.

The algorithm for investigating the natural vibrations of shells with an
inhomogeneous structure [5] is realized by the subspace iteration method
[23, 24].

Thus, the proposed integrated approach allows us to investigate the joint
effect of the parameters of pre-stressed state and the shells' geometric
characteristics on the buckling and natural vibrations of shells with complex
structure. The pre-stresses significantly affect the spectrum of natural
frequencies. Their allowance makes it possible to determine the bifurcation
points and the value of the critical force by the dynamic criterion [25]. According
to the dynamic criterion, the load which corresponds to the appearance of a
negative value of the fundamental frequency is taken as critical.

2 Analysis of stability and natural vibrations of the ribbed panel.
Investigation of the stability of rib-reinforced shells is presented using the

example of shallow spherical panel of square planform (K :2a2/(R h)=32,
a=60h, R=225h) with hinged edges, and subject to uniform pressure. The
shell is reinforced from inside by two central cross-ribs (height 4. =3k and
width b, =2h) (Fig.1). The input data: h=1lcm, E=2.1-10° kg/em?,
v =0.3, p=7.85-103 kg/cm?. Results are presented in terms of dimensionless

parameters: g = a4q/(Eh4) ,ul' = ul//h , where u!" is the deflection of the panel

along the axis x!".
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Analysis for convergence
shows that the 16x 16 FE
mesh for whole panel is
sufficient. To obtain the
results with greater accuracy,
the 42 x 42 FE mesh has been
used in the calculations.

The comparison of
solutions is performed with
data obtained for a smooth
panel to analyze the effect of
ribs on natural vibrations and

Fig. 1. Fragment of ribbed panel the buckling of a shallow shell.

The results of the investigation

of nonlinear deformation and the buckling of a smooth panel are given in Ref. [1, 2].

The results of the investigation of the natural vibrations for this panel are given in
Ref. [5].

There is the dashed line with the mark “ssa” for the solution of the smooth
panel on the “load — deflection” (“g —u ) and “load — frequency” (“g —®”)

curves. The results of calculations for the ribbed panel are marked “ "I .

The circles on the “g —u ” and “g —®” curves indicate the loads g’ for
which the natural vibrations are calculated. The load g™=0 corresponds to the
initial state when the panel is not loaded (g =0).

Analysis of the results (Table 1) shows us the following.

Under loads up to the value g*=¢ (g'=0+g’=>) the eigenfrequencies “w, ”
and “ 5 ” are multiple. As a result the “g —®, ” and “¢ — w3 ” curves coincide on
this section (Fig. 2), and the corresponding mode shapes have the form shown in

Fig. 3 (g=0).

Table 1
Eigenfrequencies of the ribbed panel for different values of the load g*
No(qi) o, Hz ,, Hz sy, Hz w,, Hz s, Hz g, Hz
0 493.16 761.98 761.98 793.29 970,44 11221
1 491,03 757,13 757,13 786.81 963,56 1116.3
2 484,35 746.97 746.97 773.92 950,21 1106,8
3 473,94 730,92 730,92 753,68 929,28 1092,0
4 457,36 704,72 704,72 720,93 895,60 1068.,6
5 429,74 659,24 659,24 664.82 838.49 1030.2
6 378,78 553,51 567,29 567,29 727.84 960,48
7 321,23 482,05 502,72 502,72 664.92 934,08
8 287,05 402,90 436,65 436,65 593.95 895,02
9 224,04 241,95 309,07 309,07 470,04 833.85
10 106,79 145.85 224,59 224,59 413,22 807,73
11 - 982,64 101,45 159,47 159,47 373,40 787,21
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Fig. 2. The “load — frequency” curves
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Starting from the load g’=°, we have a
coincidence of the eigenfrequencies w; and
o4 (Table 1), the “g—w,” and “qg—w3”
curves (Fig.2) and the corresponding
reconstruction of the vibration modes (Fig. 3,

ai:6 , ai:IO)'

Throughout the range of load changing
(from g™=0 and until g=?), the mode shape
that corresponds to the frequency ; has a
simple form (Fig.3; ¢, g™=®). The
vibration is characterized by deformation in the

area of the center of the panel. To the moment of buckling, the mode shape has an
asymmetric form with maximum amplitude at the centers of the quarters (Fig. 3,

ai:IO).

gi =0

Fig. 3. Reconstruction of the first four mode shapes in the process of loading

A comparison of the "load-deflection" (Fig. 4) and "load-frequency" curves
(Fig. 5) for smooth and ribbed panels has showed the following: adding two ribs

increases the mass of the panel by 19.3% and g.¥ by a factor of 1.5 [1, 2]; and

decreases the frequency 031':0 by 7.5% (for a smooth panel 031':0 =533.78). Upon
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the load c_]z80>67i=4 the frequency w; for the ribbed panel is greater than the
corresponding frequency for a smooth shell.
According to the dynamic criterion when a frequency ;=0, the load can be

taken as critical. For a ribbed panel g =291,4.
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Fig. 4. The “load — deflection" curves” Fig. 5. Diagrams for smooth and ribbed panels

Conclusions. A method for studying the natural vibrations of inhomogeneous
shells subject to action of static loads is considered. The method is based on a
unified methodology that combines the problems of static stability and the
vibrations of elastic shells. A modal analysis is performed on a pre-stressed
structure. This approach allows us to determine the critical load by the dynamic
criterion.

The natural frequencies and mode shapes are important parameters in the
design of a thin-walled structure especially for dynamic loading conditions.
These vibration characteristics of a structure may be served as a starting point for
another, more detailed analysis.

The developed method has been used to investigate the buckling of a thin
ribbed shell with the definition of frequencies and forms of natural oscillations at
each increment of the load. Dependences of the vibration characteristics on the
loading increase have been obtained.
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Kpueenko O.I1.
BIIJIUB CTATUYHUX HABAHTAKEHb HA BJIACHI KOJIMBAHHSI PEBPUCTHUX
OBOJIOHOK
PosrmsiHyTa MeTOAMKAa JOCIDKEHHS BIACHHX KOJNMBAaHb TOHKOCTIHHUX OOOJIOHKOBHX
KOHCTPYKII 3 ypaxyBaHHSAM Jii CTaTHYHOrO HABaHTAXKEHHS. MeTOAUKAa CIHPAaeThCs Ha
KOMIUIEKCHHH MiAXiA, IO MOEAHYE CKIHYCHHO-EIEeMEHTHHH METOJ IOCHTIKEHHS I'eOMETPHYHO
HeNiHIHHOrO JedOopMyBaHHS, CTIKOCTI Ta I103aKPHTHYHOI IIOBEIIHKM TOHKHX HEOMHOPiTHHX
00OJIOHOK Ta MOJANbHHIl aHami3 OOOJIOHOK 3 ypaxyBaHHSM HAsSBHOCTI HAIPYKEHOTO CTaHy Ha
KOXXHOMY KpOILli HaBaHTa)XCHHs. BHKOHaHO aHami3 9acToT i (OpM BIACHHX KOIMBAaHb TOHKOL
pedpucToIo MaHed, o MAapHIPHO ollepTa 0 KOHTYPY Ta HaBaHTA)KEHA PIBHOMIPHHM THCKOM.
KaiouoBi ciioBa: TOHKa NpyxHa 00OJOHKA, pedpo, CTiiKicTh, BIACHI KOJMBAHHS, CTATHYHE
HaBaHTAXKEHHS

Kpueenko O.I1.
BJIMAHUE CTATUYECKHUX HAI'PY30K HA COBCTBEHHBIE KOJIEBAHUSA
PEBPUCTBIX OBOJIOYEK

PaccmarpuBaeTcss METOAMKA HCCICHOBAHHS COOCTBEHHBIX  KOJICOAHHH  TOHKOCTEHHBIX
000JI09EYHBIX KOHCTPYKIHI C YIeTOM IPHUIOKEHHOH CTaTHIECKOW Harpy3ku. MeToauka onupaercs
Ha KOMIUICKCHBIM  IIOAXOJ, COYCTAIOIMH  KOHEYHO-)IEMEHTHBIH  METOJ  HCCIICJOBAHHS
TeOMETPHYECKH HEIHHEHHOro AeOopMHpOBAaHHS, YCTOMYMBOCTH U 3aKPUTHUECKOTO IOBEICHHS
TOHKAX HEOJHOPOAHBIX O00ONOYEeK M MOJANBHBI aHamu3 O0OOJIOYeK C YYeTOM HaIudHs
HANpPsDKEHHOIO COCTOSHMS HA KaXkIOM IIare HarpykeHus. BrlmonHeH anamu3 dacToT u (opm
COOCTBEHHBIX KOJICOAHHH TOHKOHM peOPUCTOH IaHeNH, MIAPHUPHO ONEPTOH II0 KOHTYpy H
HArpy>KeHHOH PaBHOMEPHBIM JaBICHUEM.

KuioueBble c10Ba: TOHKas yrpyras 000J104ka, pedbpo, yCTOHINBOCTb, COOCTBEHHBIE KOIEOaHNs,
CTaTHYECKas Harpy3ka

VK 539.3
Kpusenko O.11. BoiuB cTATHYHHX HABAHTAKeHb HA BJACHI KOJIMBAHHS PeGPHCTHX 00010HOK /
Omip MaTepiaiiB i Teopis cnopyx: Hayk.-tex. 30ipH. — K.: KHYBA, 2018. — Bumn. 101. — C. 38-44. —
Anri.

Hagedeno memoouxy ma pe3yiomamu po3paxyHKy 4acmom i popm 61acHuX KOAUBAHb MOHKOT
pebpucmoro naweni, wjo WapHipHO onepma no KOHMypy ma HA6AHMAICEHA PIGHOMIDHUM MUCKOM.
Tabmn. 1. In. 5. Bibmiorp. 25 Ha3s.
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Krivenko O.P. Effect of Static Loads on the Natural Vibrations of Ribbed Shells / Strength of
Materials and Theory of Structures: Scientific-and-technical collected articles — Kyiv: KNUBA,
2018.—Issue 101. — P. 38-44.

The method for and results of calculating the frequencies and mode shapes of a thin ribbed panel
hinged by the contour and loaded with uniform pressure are presented.
Tabl. 1. Fig. 5. Bibliograf. 25 ref.
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Kpueenko O.Il. BausinMe CTATHYECKMX HArpy30K Ha COOCTBEHHbIe KoJe0aHHsi pedpHCTBIX
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Ilpusedena memoouka u pe3ynbmamuvl pacyema 4acmom u @Gopm coOCMBEEHHbIX KOIeOAHUll
MOHKOU pebpucmoli namenu, WAPHUPHO ONEPMOU NO KOHMYPY U HASPYICEHHOU PABGHOMEPHbIM
oaesnenuem.

Tab6n. 1. Wn. 5. bubmuorp. 25 Hass.
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