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This article explores the Low-Rank Adaptation (LoRA) method, a fast fine-tuning technique for large-parameter neural
networks, and its potential application in architecture, construction, and structural mechanics. The study focuses on applying LoRA
to fine-tune a Latent Diffusion Model (LDM) for generating images of buildings in various architectural styles. The mathematical
foundation of diffusion models, the structure of LDMs, and key aspects of implementing fast fine-tuning of large neural networks on
specialized data are discussed. The importance of a validation dataset in preventing overfitting and determining the optimal stopping
point for training is also demonstrated. The authors aim to promote the use of neural networks in addressing challenges in structural
mechanics, construction, and architecture, in addition to developing practical Al-based tools.
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Introduction

The research objective is to evaluate the effectiveness of LoRA for fine-tuning large-parameter
neural networks on specialized data. Artificial Neural Networks (ANNs) are rapidly advancing,
offering new possibilities in various fields, including structural mechanics. Different types of neural
networks have the potential to significantly enhance the efficiency and accuracy of calculations in
structural mechanics. Multilayer perceptions (MLPs) are used to approximate nonlinear functions that
describe the behavior of materials and structures. Convolutional Neural Networks (CNNs) enable the
analysis of structural images to detect defects and predict material behavior. Recurrent Neural
Networks (RNNs) can model the dynamic behavior of structures under loads, including random and
impact loads. Deep Neural Networks (DNNs) can solve complex nonlinear problems, taking into
account physically nonlinear material properties, geometrically nonlinear deformation, and other
complex factors. Latent Diffusion Models (LDMs) have shown significant success in generating high-
quality images and can be effectively used for prototyping, creating new designs, visualizing projects,
and generating ideas in architecture and construction [1-4]. Large Language Models (LLMs) can
normalize data representation, generate hypotheses, assist in programming and design, create reports,
improve communication, and be used in solving specialized equations in structural mechanics. Overall,
neural networks offer a powerful toolkit for enhancing the accuracy and efficiency of calculations in
structural mechanics, allowing for the consideration of complex factors and the processing of large
datasets [5—8].A recent trend in neural network research is the creation of complex ecosystems
involving different types of ANNs to solve complex problems. Of course, in structural mechanics,
material strength, and other construction disciplines, specialized models trained on domain-specific
data, designed and parameterized for construction and architecture tasks, are primarily needed. Such
tools are being created and will continue to be created. However, training neural network models with
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a large number of parameters presents a challenge. Building modern LLMs and LDMs from scratch
requires massive datasets, significant computational and time costs, and can cost millions of dollars.
However, there is an opportunity to fine-tune existing models, adapting them to specific tasks and data.
One convenient approach for fine-tuning is the Low-Rank Adaptation (LoRA) method, which allows
for adjusting the model by adding a small number of parameters. The LoRA method was initially
proposed for LLMs [21], but this article will explore how this method can be used to fine-tune LDMs.

Fine-tuning of Neural Networks

Fine-tuning neural networks is an effective strategy for adapting models to specific tasks and data.
This approach is particularly relevant in architecture and construction, where generating images of
buildings requires consideration of architectural styles, spatial planning solutions, structural features,
and other specific requirements [9-14]. Unlike training from scratch, which involves adjusting all
model parameters, fine-tuning focuses on refining existing knowledge. This significantly reduces the
time and computational resources needed for model adaptation. Fine-tuning can be compared to
specialization, where the base model acquires additional knowledge and skills to address a specific
task. In the context of generating images of buildings, fine-tuning allows for adapting the model to
various architectural styles, such as Gothic, Baroque, Modern, etc. A model initially trained on a large
dataset of diverse images can be fine-tuned on a smaller dataset of images featuring buildings in a
particular style. This enables the model to generate new images that adhere to the given style and
incorporate its characteristic features. A key advantage of fine-tuning is the ability to reuse already
trained network layers. This allows the model to quickly adapt to new data, as it does not need to
relearn basic features. Instead, the model focuses on adjusting parameters responsible for the specific
characteristics of the task. LoRA, as a fine-tuning method, offers even greater efficiency by focusing
on adding a small number of parameters to the model instead of adjusting all weights. This
significantly reduces computational costs and training time. LoRA democratizes the use of LDMs in
architecture, allowing for customizing models to specific needs without requiring powerful hardware
or large datasets.

The main advantages of fine-tuning are as follows:

o Flexibility: Allows for adapting the model to specific tasks.

e Efficiency: Requires fewer computational resources compared to training a model from scratch.

e Reduced training time: Significantly shortens the time needed to adapt the model to a new task.

LoRA: Low Rank Adaptation
LoRA is a fine-tuning method for large models that adapts the model to new data by adding a small
number of parameters. The core idea of LoRA is that the weights of the model layers can be
represented through low-rank matrices. Consider a linear layer of a neural network without an
activation function, which performs the mapping x — y =Wx , where W is the weight matrix. We will
modify the operation of this layer by fine-tuning the model, adjusting the weights by AW so that the
new output is:
x—= V' =Wx=(W+AW)x=y+AWx. (1)
The term AWx can be interpreted as the result of another, separate, fully connected layer. In other
words, we can fix the weights of the matrix W and train AW as a model that predicts the difference
between the output of the original model and the fine-tuned one. The matrices W and AW must be of
the same size, for example, 128 by 128, but the rank of AW , i.e., the number of linearly independent
rows or columns, can be less than 128, for example, 4 or 8. We can represent the matrix AW as a
product of matrices 4 and B, significantly reducing the number of parameters for training if, for

example, the size of 4 is 128 by 2, and the size of B is 2 by 128. That is, instead of 1282 =16384,
we will have 128-2+2-128=>512. In the general case, we will have to train (nr +rn)/n” = 2r/n fewer

parameters, but we limit the potential of fine-tuning by the low rank of AW . Note that during fine-
tuning, we need to store the weights of the original model W 1 AW in the computer's memory, but
calculate gradients only for the "small" matrices 4 and B .
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More formally, for each layer of the model with weights W eR“** | LoRA introduces two matrices
WeR™  and BeR™ | where r <<min(d,k) . The output of the layer is modified as follows:
h=Wx+ BAx, 2)
where x is the input of the layer, and /4 is the output of the layer. During fine-tuning with LoRA, the
original weights /' remain unchanged, and the matrices 4 and B are trained on new data. This
allows for a significant reduction in the number of parameters that need to be trained, which speeds up
the fine-tuning process and reduces computational costs.
The advantages of the LoRA method are:
o Significant reduction in the number of parameters that need to be trained, which speeds up the
fine-tuning process and reduces computational costs.
e Applicability to different types of model layers, such as fully connected layers and convolutional
layers.
e Easy implementation and integration into existing deep learning frameworks.
Before discussing the process of fine-tuning a specific large model, namely Stable Diffusion 1.5,
we will describe the structure of the diffusion model and the mathematical principles underlying it.

Mathematical Foundation of Diffusion Models

Diffusion models are based on the idea of gradually adding noise to an image until it turns into pure
noise. The model is then trained on the reverse process — removing noise from random noise to restore
the original image [15-17].

Forward Diffusion Process. The forward diffusion process can be described as a Markov chain,
where a small amount of Gaussian noise is added to the image at each step. Formally, this process can
be described as follows:

q(x, |xt—1)=N(xt;\/1_.Bt X B D). 3)
where x, is the original image; x,,...,x; is the sequence of noisy images; f,.....,8; are hyper

parameters that determine the amount of noise added at each step; these values usually increase
linearly or according to a given schedule from a small value (e.g., 0.0001) to a larger one (e.g., 0.02);

N(x;u,0) is the Gaussian distribution with mean g and variance o ; / is the identity matrix.

This process can be interpreted as a gradual "forgetting" of information about the original image.
With each step, the image becomes increasingly noisy until it turns into pure Gaussian noise. Using
reparameterization, a formula for the forward process can be derived that depends only on the input

image x,:
x, =2, % +1-2,9, (4)

— t . . .
where &, =[], ; @, =1-p,; ¢ is Gaussian noise.

This formula allows for significantly speeding up the forward process, sincex, can be directly

sampled at any time step.
Reverse Diffusion Process. The reverse diffusion process is modeled using a neural network that
is trained to remove noise from the image. This process can be described as follows:

Do 1%)= N (x589 (3, Zg (3,50)), )
where 6 represents the parameters of the neural network; u,(x,,¢) is the predicted mean of the
distribution, which is calculated by the neural network based on the noisy image x, and the time
stept; Zy(x,,t) is the predicted variance of the distribution. In many implementations of diffusion
models, X, is considered a constant or a fixed function of f, .

The neural network is trained to predict the parameters of the distribution p,(x,_,|x,) , which

allows it to gradually remove noise from the image and restore the original image.
To implement the reverse process, it is necessary to define the conditional distribution p(x,_|x,) .

Using Bayes' theorem and the Markov property of the diffusion process, it can be shown that:
p(xt—l |xt)=J.p(xt—1 |xtsx0)p(-x0 |-xt )dXOs (6)
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where p(x,_; | x,,x,)is the distribution of x,_;, given x, and x,, and p(x,|x,) is the posterior
distribution of x, given x, [18].

Since the forward diffusion process is a Markov chain with Gaussian transitions, the distribution
p(x,_ | x,,xy) is also Gaussian and can be computed analytically. However, the posterior distribution
p(xy|x,) is difficult to compute. Therefore, in diffusion models, this distribution is approximated
using a neural network.

Given that x,, x,and x,_; are related as (4), we can express x in terms of x, and ¢:

x,—/1-0,¢

Xo=——fF=— (7N

o,

Substituting this value into the formula for q(x,_1 | x, %o ), we get:

q(xt—l |xt ,XO)ZN(XI_I ;lat (xt »Xo ):Bt[)s (8)
where
. o, (1-a,_ )x,++Jor,_ B.x,
:ut(xt:xo)=\/7t( ; i) t_ L 0: )
n 1—07,_1
= . 10
B=2h (10)

Training the Diffusion Model is based on maximizing the negative log-like lihood of the training
data. After a series of calculations, the Evidence Lower Bound (ELBO) can be written as:

lng(x)ZEq(xl\xo)[Inge(xo |xl)]_DKL (q(xT |x0)||p(xT))_
_2?:2Eq(xl‘xo)[DKL(q(xt—l|xt’x0)||p9(xt—1|xt)):| =Ly—Ly Z, 2 Li-1s (11)

where E is the mathematical expectation over the distribution; Dy, (P||Q) is the Kullback-Leibler
divergence, a measure of how much a model probability distribution Q is different from a true
probability distribution P; L, is the reconstruction term, similar to the ELBO of a variational

autoencoder; L; shows how close x; is to the standard Gaussian distribution. This term has no

learnable parameters, so it is ignored during training; Zt:Z L,_, formulates the difference between the

desired denoising steps p, (x, ;| x,) and the approximated ones g(x, ; | x,,x, ).

From the expression for ELBO, it is clear that maximizing the likelihood is reduced to learning the
denoising steps L, .

Loss Function. To train the diffusion model, the Variational Lower Bound (VLB) on the negative

log-likelihood of the data is used. The VLB can be decomposed into several components, one of which
is responsible for restoring the image from noise. This component has the form:

L,=E 1o (1) =i, x0) || I (12)
where fi(x,,x,) is the optimal mean of the dlStrlbuthIl p(x,_ | x,), which can be calculated

analytically, knowing the parameters of the forward diffusion process.
By minimizing this loss function, we train the neural network to predict the optimal mean of the
distribution, which allows it to effectively remove noise from the image.

In many implementations of diffusion models, the loss function L, is parameterized as follows:

B
70— Do (N & X0+ 1-, 0, (13)
20,(1-2, )| ol =204 H

where ¢, is the noise that was added to the image at step ¢ of the forward diffusion process; ¢, is the

Lt _Exo 1,0

predicted noise, which is calculated by the neural network based on the noisy image x, and the time step # .
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This parameterization allows for simplifying the calculation of the loss function and improving the
stability of training. Additional "penalties”" can be added to the standard loss function for diffusion
models described above. For example, Weight Decay, a penalty proportional to the square of the
magnitude of the weights, is discussed below. This forces the model to prefer smaller weight values,
leading to a simpler and more generalized model and preventing overfitting.

Latent Diffusion Models (LDMs) differ from standard diffusion models in that they operate in the
latent space, which is accessed through a Variational Autoencoder (VAE). The VAE consists of two
parts: an encoder, which transforms the image into a latent representation vector, and a decoder, which
restores the image from the latent representation vector. The use of VAE allows LDMs to work with
lower data dimensionality, which reduces computational costs and improves generation quality. Instead
of applying the diffusion process to high-resolution images, LDMs apply it to compact latent
representation vectors. This significantly reduces the computational complexity of the model and
improves its efficiency.

Architecture of Latent Diffusion Models

LDMs typically use the U-Net type [19] as the main architecture of the neural network for the
reverse diffusion process. U-Net is a convolutional neural network that consists of two parts: an
encoder, which reduces the dimensionality of the image by sequentially applying convolutions and
pooling operations, and a decoder, which restores the image to its original size by sequentially
applying convolutions and upsampling operations. U-Net also uses skip connections, which connect
layers of the encoder and decoder with the same resolution. Skip connections allow for transferring
information from the encoder to the decoder, which improves the quality of image restoration. In
LDMs, U-Net takes a noisy latent representation vector and a time step as input, and outputs the
predicted mean of the distribution py(x, | x,).

AdamW Optimization

Instead of regular stochastic gradient descent (SGD) during backpropagation for training, we will
use AdamW (Adam with Weight Decay) optimization, which is an improvement over another adaptive
optimization method, Adam (Adaptive Moment Estimation).

SGD is the basic backpropagation method, where parameter updates occur in the direction opposite
to the gradient of the loss function at a constant learning rate for all parameters. This method can be
slow and get "stuck" in local minima or saddle points.

Adam, compared to SGD, includes the following improvements:

1. Momentum: Introduces an exponential moving average (EMA) of gradients, which smooths
updates and helps to pass through noise and small local minima.

2. Adaptive learning rate: Calculates the EMA of the squares of gradients. This allows for
different learning rates for each parameter. Parameters with large gradients receive a smaller learning
rate, and parameters with small gradients receive a larger one.

3. L2-regularization: Adds a penalty proportional to the square of the weights to the loss
function. This "pushes" the absolute values of the weights towards zero, preventing overfitting.

AdamW retains all the advantages of Adam (momentum and adaptive learning rate). The main
difference is the decoupling of Weight Decay. AdamW implements L2-regularization (weight decay)
not by adding a penalty to the loss function, but by adding it directly to the parameter update step. This
ensures that all parameters receive the same penalty for their magnitude, regardless of their gradients.
This contributes to the better generalization ability of the model, reducing the error on new data. The
penalty for the magnitude of the weights is applied consistently, regardless of the history of gradients.
In addition, decoupling weight decay in AdamW makes it easier to tune hyperparameters. The link
between the optimal learning rate and the optimal L2-regularization coefficient becomes weaker. This
makes AdamW a more convenient and often more effective choice than classic Adam with L2-
regularization.

In classic Adam, L2-regularization is added directly to the gradient. That is, we penalize large
weights when calculating the gradient

g,=Vf(6,)+w86,, (14)
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where g, is the modified gradient at time step ¢. This is what will be used to update the parameters;
\%4 (Qt) is the gradient of the loss function f with respect to the model parameters 6 at time step ¢,
i.e., the direction in which the loss function increases most rapidly (we want to move against this
direction to minimize the loss); 0, are the parameters (weights) of the model at time step #; w, is the

weight decay rate at time step t (this is a small number, for example 0.01, which controls the strength
of L2 regularization); w,0, is the L2 regularization term (we add a penalty to the gradient,

proportional to the magnitude of the weights, forcing the weights to be smaller in absolute value,
which helps prevent overfitting).
In AdamW, weight decay (w, ;0, ;) is added directly to the parameter update, not to the gradient.

We first calculate the parameter update using the usual Adam formula, and then apply weight decay

1
9,+1[=0,[—77[ﬁ17"1,+w”-9“-],Vt, (15)
’ ’ Vv, +€ T

where 6,,,; is the value of the i-th parameter at the next time step ¢ + 1; 6, ; is the value of the i-th

parameter at the current time step #; 1 is the learning rate; v, is the bias-corrected second raw moment
estimate (essentially, the adaptive learning rate for each parameter); ¢ is a constant for numerical
stability (prevents division by zero, for example 0.0000001); m, is the bias-corrected first moment

. . . . . . |
estimate; w,; is the weight decay coefficient for the i-th parameter at time step Fm, is the
' V,+E€

standard part of the Adam formula; w, ;0, ; is the decoupled weight decay term.

1
The biased first and second moment estimates of the gradient are expressed here in terms of the
unbiased estimates as follows:

m,=Bm,_+(1-,)g,, (16)
i, = m, ’ 17
e (1)

v =By, +(1-B,)g}. (18)
~ V,
= 19
Ty (1)

where m, is the biased first moment estimate (exponentially smoothed average of the gradients) at
time step # v, is the biased second raw moment estimate (exponentially smoothed uncentered variance

of the gradients) at time step ¢.

The advantages of AdamW (in many cases) are:

o Simplifying the training process by decoupling the influence of the learning rate and weight decay,
which eliminates the drawback of Adam, where L2-regularization is "mixed" with the adaptive
learning rate, leading to inefficient search for optimal parameters.

e Better generalization performance of the model, i.e., the model performs better on new data.

Setting the Test Task and Choosing Software

We will fine-tune the Stable Diffusion 1.5 latent diffusion model, which is capable of generating
high-quality images, to generate buildings in several architectural styles. To implement the LoRA
method and the AdamW optimizer discussed above, we will use the open-source tool One Trainer [20],
which has a user-friendly interface for setting hyperparameters, choosing optimizers and loss
functions, monitoring the training process, and supports various types of fine-tuning, including LoRA.

Training

To fine-tune the Stable Diffusion 1.5 model using LoRA in One Trainer, five sets of images of
buildings in the styles of Bauhaus, Deconstructivist Architecture, Parametric Architecture,
Renaissance, and Neoclassical Architecture were prepared for training the corresponding five LoRA
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models. Each set contained high-quality images of 512x512 or 768x512 pixels and consisted of 64
images without noise and artifacts. All images were annotated (accompanied by a text description)
using the Blip2 model (Bootstrapping Language-Image Pre-training for Unified Vision-Language, v2).
In each of the 5 sets, a validation part of 8 images was allocated, and the remaining 56 images formed
the training dataset.

The following hyperparameters were set for training: Batchsize: 4; Learningrate: 0.0003;
Optimizer: AdamW with weight coefficients from formulas 15-19: w,; =0.01, B, =0.9, B, =0.999,

£ =0.00000001; Loss function: standard loss function for diffusion models (taking into account
AdamW); LoRA rank (see the section "LoRA: Low Rank Adaptation" above): 16.

In addition to the above features of the applied AdamW optimization, the training process followed
the usual scheme:

1. Forward propagation: Images from the dataset are fed to the input of the model. The model

generates images that will be compared with the original images.

2. Loss calculation: The difference between the generated and original images is calculated.

3. Backpropagation: The losses are used to update the weights of the LoRA matrices.

The epoch, i.e., steps 1-3 performed for all images of the training dataset, thus consisted of 56/4=14
steps. To ensure a more stable start to the training process, the learning rate was linearly increased from
0 to 0.0003 over the first 100 steps. After each epoch, a validation step took place, i.e., calculating the
loss function on data unknown to the model during training. The process was monitored using Tensor
Flow. The values of the loss function for the training and validation sets were passed to Tensor Flow
after each step, and test image generation with fixed prompt, seed, and other generation parameters
was performed after every 5 epochs.

Figures 2a and 2b illustrate the smoothed loss function values for the training and validation sets of
the Bauhaus style over 200 epochs. Figure 2c displays test generations for the simple prompt
"building" with fixed generation parameters. The oscillatory pattern in Figure 2a indicates an
aggressively high learn in grate, leading to faster but potentially unstable training. The progression of
the training process is evident from observing the test generations, which visually mimic the
characteristics of the dataset images.

The validation loss function graph in Figure 2b is significantly more informative. Region O can be
interpreted as the classic overfitting zone, where the model starts to memorize noise instead of general
patterns. In this case, it implies that the LoRA model is learning to reproduce specific elements of
individual images rather than the overall style inherent in the training dataset. This explains the
increasing discrepancy when comparing generations from this stage with the validation dataset, which
shares general characteristics with the training set but lacks the specific features memorized from the
training images. The local minima in region G are suitable candidates for stopping the training process.
We chose point p to terminate training. Similarly, loss function graphs for the other four LoRA models,
with the priority region G and the chosen training stop point p marked, are shown in Figures 2d-2g. We
attribute the stability of the training process with such a high learning rate to the adaptive nature of the
AdamW optimizer.

The resulting LoRA models contain fewer than 20 million parameters and have a size of
78,489,960 bytes. This is significantly smaller than the size of the main SD 1.5 model with
approximately 860 million parameters and a size of 4,265,146,304 bytes.

Figure 3 presents examples of images generated using the fine-tuned LoRA models with the prompt
"Building of the city theater, summer atmosphere" and Control Net with Lineart and Depth models for
the image of the Kyiv Theater on Podil. A soft mask image was used to define the generation zone
based on the original image. In other words, the task was to generate the appearance of the Theater on
Podil building in the styles of Bauhaus, Deconstructivist Architecture, Parametric Architecture,
Renaissance, and Neoclassical Architecture, while preserving the overall compositional and spatial
planning parameters.

Conclusions

Fine-tuning models with a large number of parameters using the Low-Rank Adaptation method is an
effective strategy for adapting large models to solve specialized tasks. Fine-tuning the latent diffusion model
using the LoRA method can effectively generate images of buildings in specified architectural styles.
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Fig. 1. Datasets of building images in various architectural styles for training with the LoRA method

Analysis of the training process using a validation sample allows for avoiding over fitting of the
resulting models, while main taining flexibility in the practical use of LDM + LoRA. LoRA allows for
adapting the model to new data by adding a small number of parameters, which significantly reduces
computational costs and training time. One Trainer provides convenient tools for fine-tuning LDMs
using LoRA. The results of the study showed that fine-tuning Stable Diffusion 1.5 using LoRA allows
for generating high-quality images of buildings in selected architectural styles. The model successfully
reproduces the characteristic features of the specified styles, which indicates the high potential of using
LDMs in architecture and construction.
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Fig. 2. Features and key indicators of the LORA training process

Further research plans include:

e Applying LDMs to create specified spatial planning solutions, building and structural systems,
and selecting the type of building structures.

o Testing the fine-tuning of other large models using the LoRA method, namely LLMs, for solving
specialized problems in structural mechanics.
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Fig. 3. Generations of the Kyiv Theater on Podil building in various architectural styles using trained LoRA models

e Expanding the application of neural networks for automated analysis of building technical
conditions through transfer learning. This will encompass identifying and classifying defects
from diverse data sources, including images acquired from sources such as drones, smartphones,
and surveillance cameras, as well as data from sensors, ultimately contributing to an integrated
system for comprehensive assessment and prediction of building structure conditions.
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Cmamms naoiviwna 13.02.2025

Isanuenxo I'M., l'emyn I'.B., Craspos 1.O., ConominA.B., I'emyn C.IO.
3ACTOCYBAHHS METOIY HU3bKOPAHI'OBOI ATANITAIIi HA TPUKJIAZI JOHABYAHHS MOJIEJI
IPUXOBAHOI JUD Y 31T

Crarts 10cimpKye MeTo Hu3bkopanroBoi apantauii (LORA), MBHIKY METOAMKY TOHKOrO HalallTyBaHHS HEHPOHHUX MEPEX 3
BEJIMKOIO KUIBKICTIO MapameTpiB, Ta il HOTEHIIHHE 3aCTOCYBaHHs B PI3HMX Taly3sX, 3 aKLEHTOM Ha apXiTeKTypy, OyAiBHHMITBO Ta
OyniBesbHy MexaHiky. JlocmipkeHHs 3acrocoBye LORA 11 TOHKOrO HanamTyBaHHs Mozel npuxoBanol audysii (LDM) ais renepanii
300pakeHb Oy/IiBesb y PI3HUX apXITEKTypHHX CTWIISAX, CIYI'YIOUM LIIOCTPATUBHMM NpUKIanoM edextuBHocTi LORA s amanranii
BEJIMKHX MOJIeTIel 10 CIIelliani3oBaHNX 3aBlaHb.

HeiiponHi Mepeski 3 BEIMKOIO KUIBKICTIO ITapaMeTpiB, Taki K Monedi npuxoanoi qudysii (LDM) ta Benmki MoBHi Monteni (LLM),
MPOJIEMOHCTPYBAJIM 3HAYHUI MOTEHIAJ1 y PI3HUX raly3sx, ajie iX HaBYaHH: 3 HyJIsl € OOYHCITIOBAJIBHO JOPOTUM Ta TPYIOMicTKHM. TOHKe
HaJALITYBaHHs MPOIOHY€E OUIbII eeKTUBHUI MiAXil NUIIXOM aJanTallii MornepesHbo HABYCHUX MOJENEH 10 KOHKPETHUX 3aBllaHb Ta
nanux. LoRA e Ounble migBuiye eeKTHBHICTb, 101at041 HEBEIMKY KiJIBKICTh ITApaMEeTpiB 110 MOZIEIT, @ HEe HaJIAITOBYKOYH BCi Bary.
LoRA BHKOpPHUCTOBYE HM3bKOPAHIOBI MATPU4HI IPEACTABICHHS AJIA 3MEHIUCHHS KIUJIBKOCTI MapameTpiB, 110 HABYAKOTHCA, IiJ yac
TOHKOTO HaJIALITYyBaHHS. BBOASYM MEHII MAaTpULl IJIs KOXKHOIO IAapy Ta HABYAKOYM 1X HA HOBUX JaHMX, LORA 3HaYHO NpPHCKOpIOE
NPOLIEC TOHKOrO HAJAIITYBaHHS Ta 3MEHIIYe OOUMCIIOBaIbHI BUTpATH. JOCIiPKEHHS IeMOHCTpYe 3acTtocyBaHHs LORA ju1s ToHKOro
HanamryBanHs LDM StableDiffusion 1.5 s renepauii 300pakeHb OyniBesb y pI3HHX apXiTEKTYpHHX CTWIIX 3@ JIOIIOMOTOO
iHcTpymenty OneTrainer.

PesynbTati 1OKasyloTh, 110 TOHKE HanamTyBaHHs StableDiffusion 1.5 3a nomomororo LoRA e(ekTBHO reHepye BHCOKOSIKICHI
300pakeHHst Oy/iBesb y 3aJaHUX apXiTEKTYpHMX CTWIIAX, Migkpecmoroun moreHnian LoRA juis ajanTauii Benmmkux mozmenedt 1o
Creliani3oBaHuX 3aB/aHb. HaronomryeTbcss Ha BMKOPHUCTaHHI HaOOpy JaHMX JUlsi Bajijamii juisd 3arnoOiraHHs INEepeHaBYaHHIO Ta
BU3HAYEHHs ONTUMAJIBbHOI TOUKH 3yIMHKU HAaBUaHHS, 3a0€311€4yIOuN y3araJbHeHiCTh MOIelIi.

e nocnimkeHHs poOUTh BHECOK Y IIMPIIE JJOCTIPKEHHS 3aCTOCOBHOCTI LORA /115t TOHKOrO HaJjallTyBaHHs BEIMKUX HEHPOHHUX
Mepex y pi3HMX obnacrsix. Xoda AOCHPKEeHHs 30cepekeHO Ha LDM s apXiTeKTYpHHX 3aCTOCYBaHb, OCHOBHI HPHUHIMIN Ta
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NPOZIEMOHCTPOBaHa e(peKTHBHICTh LORA mHOIMPIOIOTECA HA IHINI THIOM BEIMKMX Mozenei, Taki sk LLM, s BupilieHHS
CrIeLiaJli30BaHKX 3aB/IaHb Y Pi3HUX TalTy3siX.

Kutro4oBi cy10Ba: MeTos1 HU3bKOPAHIOBOI aJanTalliil, TpEeHyBaHHs HelpoMepex, Moesi mpuxoBaHoi Audys3ii, renepaTBHi Mozei,
Heiipomepexi, ontuMizatop AdamW, renepariist 300paxeHb, apXiTEKTYpPHI CTWIIL, MAIIMHHE HABYaHHS, JATaceT, BaJIiALliiiHUI1 laTacer.

Ivanchenko HM., Getun G.V., Skliarov 1.O., Solomin A.V., Getun S.Y.
APPLICATION OF THE LOW-RANK ADAPTATION METHOD ON THE EXAMPLE OF FINE-TUNING A LATENT
DIFFUSION MODEL

This article explores the Low-Rank Adaptation (LoRA) method, a fast fine-tuning technique for large-parameter neural networks,
and its potential application in various fields, with a focus on architecture, construction, and structural mechanics. The study applies
LoRA to fine-tune a Latent Diffusion Model (LDM) for generating images of buildings in various architectural styles, serving as an
illustrative example of LoRA’s effectiveness for adapting large models to specialized tasks.

Large-scale neural networks, such as Latent Diffusion Models (LDMs) and Large Language Models (LLMs), have shown
significant potential in various fields, but their training from scratch is computationally expensive and time-consuming. Fine-tuning
offers a more efficient approach by adapting pre-trained models to specific tasks and data. LoRA further enhances efficiency by adding a
small number of parameters to the model instead of adjusting all weights. LoRA uses low-rank matrix representations to reduce the
number of trainable parameters during fine-tuning. By introducing smaller matrices for each layer and training them on new data, LORA
significantly speeds up the fine-tuning process and reduces computational costs.

The study demonstrates the application of LoRA for fine-tuning the LDM Stable Diffusion 1.5 to generate images of buildings in
various architectural styles using the OneTrainer tool. The results show that fine-tuning Stable Diffusion 1.5 using LoRA effectively
generates high-quality images of buildings in specified architectural styles, highlighting LoRA’s potential for adapting large models to
specialized tasks. The use of a validation dataset is emphasized for preventing overfitting and determining the optimal stopping point for
training, ensuring the model's generalizability.

This research contributes to the broader exploration of LoRA’s applicability for fine-tuning large neural networks in various
domains. While the study focuses on LDMs for architectural applications, the underlying principles and demonstrated effectiveness of
LoRA extend to other types of large models, such as LLMs, for addressing specialized tasks in different fields.

Keywords: Low-Rank Adaptation, Fine-tuning, Latent Diffusion Models, Generative Models, Neural Networks, AdamW
Optimizer, Image Generation, Architecture styles, Machine Learning, Training Data, Validation Data.
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