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Abstract. The paper investigates and determines the parameters and energy indicators of vibrating machines with harmonic and
vibroshock modes of motion for compaction of concrete mixtures. The equations of motion of the vibration system "working body
of the machine - compaction medium" are made on the basis of a hybrid discrete-continuum model, which adequately describes the
real process of compaction of the mixture. Calculations were made on the basis of the obtained analytical dependencies to determine
the amplitudes of oscillations and the oscillation energy of a two-seater The systems made it possible to assess their changes in
different modes of operation. Thus, the first resonance was recorded at a frequency of 5 Hz, and the second at a frequency of 35 Hz.
For the action of an external force on the first mass, the resonance mode is determined by the parameters of the second mass,
including the energy dissipation coefficient and the ratio between these masses. The conditions for the influence of dissipation in the
resonance mode at a frequency close to the partial natural frequency of the mass on which the external force acts have been
determined. The energy parameters of the vibrating percussion system have been investigated and determined. The equations of
motion of a vibro-percussion installation as a model with discrete-continuous parameters are given and solved.

Amplitude and skeletal characteristics are given, the influence of parameters on their change is determined, and two ways of
implementing the resonance mode are revealed: by changing the frequency of the harmonic force, and at the same time, the
possibilities of controlling the movement of the installation by changing the frequency and the value of compression of the limiter by
a constant force are determined. Formulas for determining the energy parameters of a vibro-percussion installation, which take into
account the discrete parameters of the machine and the distributed parameters of the concrete mixture, have been obtained.

Keywords: discrete-continuous model, two-seat vibration unit, vibration shock unit, compaction, mixture, energy, resonance,
parameters, amplitude, oscillation frequency.

Entry

Vibrating machines are widely used in various industries. Their effectiveness is especially
important in road construction in the construction of asphalt and concrete roads and in the construction
industry in the formation of concrete and reinforced concrete products. The vibration effect on the
mixture is of great practical importance and is the basis of all modern technology of sewing mixtures.
The essence of the vibration action lies in the fact that during oscillations, the mixture acquires the
properties of fluidity due to the violation of the bonds between the particles. Particles that receive
increased mobility are mixed and, under the influence of weight forces, tend to take a more stable
position. At the same time, the air between the particles is squeezed up and the mixture, in the end, is
significantly sewn. The process of vibration coating of the mixture is complex and takes place in
several stages: restacking of components with intensive air squeezing, particle convergence and final
air squeezing, as well as possible additional squeezing due to some additional, for example, static
pressure. The complexity of the processes taking place in the mixture, differences in the views of
scientists and engineers on the compaction process - these are the reasons for the different approach
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and the lack of a generally accepted model for calculating the main design and technological
parameters. Taking into account the modern requirements for energy reduction, an urgent task is to
improve the methods for calculating the parameters of vibration technology, the use of which will
make it possible to minimize the energy for the flow of the technological process. The paper discusses
the dynamics of vibration machines and the determination of energy indicators on the basis of the
classical theory of mechanical oscillations and the theory of continuums.
Analysis of the latest research and publications

Among the works devoted to the determination of the parameters of vibration machines, it is worth
noting the following works. In the paper [1], a discrete model was used in the study of the vibration
platform with spatial oscillations. In the paper [2], a discrete model was used in the study of sorting
processes by a vibrating screen. In paper [3], when modeling a vibrating mixer, a discrete model is
given. The obtained research results within the framework of the discrete model are valid only within
the framework of the conducted research. The paper [4] describes the creation of a mathematical model
of a shock-vibration platform, where the mode of asymmetric oscillations is implemented, in which the
upper and lower acceleration of the form with concrete have different values. A discrete-continuum
model of the vibration system is proposed in [5]. The developed model for determining the parameters
of vibration machines is used in the work [6]. The monograph [7] describes the dynamics and
determination of the parameters of vibration processes of grinding, sorting, compaction and reliability
of vibration machine elements. Based on the analysis of energy dissipation methods given in [8], the
following dependencies can be identified for determining energy or power. Thus, power is determined
by the empirical formula:

P=b,5X,"0’, (1)
where b, - specific coefficient of resistance, which refers to the unit of active area of the vibration
compaction body; S is the active area of vibration compaction of the mixture; Xy, @ is the amplitude
and frequency of oscillations, respectively.

Empirical also includes the formula for determining the power of the vibration pad drive:
P=o,mP,, 2
where o, - empirical coefficient; m” - reduced mass of concrete; P, power-to-weight ratio.
The viscous friction hypothesis is sometimes used to determine power:

X'’
P=k,, 02 , A3)

where k,, - empirical coefficient of resistance to oscillations.

Consequently, the existing methods for determining the oscillation power of the "vibrator-medium"
system are very diverse. This is due to the complexity of the "vibrator-medium" system, the lack of a
generally accepted theory describing the mechanics of the medium. Hence the tendency to simplify the
system, to take into account only certain forces "found mainly empirically" and to neglect other forces,
which in the general case leads to a significant deviation of the calculated data from their physical
values. It is safe to say that it is necessary to expand our understanding of energy dissipation through a
more detailed study of such processes.

Objective

The aim of the study is to determine the energy indicators on the basis of a discrete-continual
model of the vibration system, taking into account the dissipative properties of the sealing medium.
To achieve the goal, the following tasks have been formulated and solved:

- research and determination of energy parameters of a vibration unit with a harmonious load
change;

- research and determination of energy parameters of the vibration percussion system.

Research and determination of energy parameters of a vibration unit with a harmonious change
of external force

As a design model of a vibration unit with a harmonious load change, we take a two-seater one (Fig.
1). Here m; is the mass of the working body; m, is the mass, which includes the mass of the mold with the
concrete mixture; ¢, b; — coefficients of stiffness and dissipation of the supporting elements of the
installation; ¢,, b, are the stiffness and dissipation coefficients connecting the masses m; and m,; Fj is the
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The difference between this scheme and the classical
one is that the mass m, according to the discrete form of
notation takes into account, in addition to the mass of the v 3 75

form mf, the mass of the concrete mixture not in the

amplitude of the external force of the vibration exciter. Tx;

form of a discrete coefficient, as in dependence (2), but

by the coefficient «,, which takes into account the ; £z T &
wave phenomena in the mixture according to the method '
given in the paper [6]: 3 E T
My=m, + &, mg, (4) o Fo =y 9@
where j My E i
ash2oh+ Bsin25h (5)
a}l = :
h(o? + B[ ch2th + cos 2 Bh] & by

In formula (5): « and B - coefficients that take
into account the effect of energy dissipation on the
change in the shape and degree of wave attenuation in the concrete mixture, and / - the height of the
column of the concrete mixture;

Fig. 1. Design diagram of a two-seater vibration unit

w
a=p—; B=v—, ©)
c, c

where

1+y> -1 e J1+77 +1

No2a+yr) " N 20+
The o factor determines the attenuation of the wave propagating in the layer of the medium, and the
p factor determines the attenuation of the length of the same wave. Indeed, if there is no resistance

(y=0), then ¢ =0, f= CQ that is, the wave propagates without attenuation under this condition.
6

Differential equations of motion are composed by the method of equilibrium of forces, [5] which is
based on the use of the d'Alembert principle, according to which, along with external forces, the
inertial forces of masses m; and m, are also taken into account. Omitting simple transformations, we
get the equations of motion:

mx, +b ()'cl ) ) +q (x1 -X, ) = Fye'™,

mzxz _bl (5‘1 _552)—01 (xl —)62)+172x2 +oyx, = 0. 7
The obtained equations (7), for a convenient solution, are reduced to the dimensionless form:
myra” morw
X = 511, X = 512 (8)
e, my@

And having carried out the appropriate transformations, we get:

xY&+ Vﬂl(‘fll 512) (51l 512) )
7262 1"‘7(%1(51‘ 512) ?ﬁzflz 1+Z(§1‘ 512)+72ﬂ2§12—0. 9)

The solution of equations (9) obtained dependencies for determining the dimensionless amplitude

of mass displacements m,:
my Xy M?+ N?
G, = =Y (10)
myr H"+Y

where such designations are adopted
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X 2 2 X 2 2.2 2
H=-2 92 4L - + 777,
th XV H/ﬂlﬂz XY v+ Xy
X X 2 3 3
Y=-—"2 18 + 4% - - ,
1+Z?ﬁ2 meﬁl XV Bi—xvB,
M=y§—y2+—x , N=yﬂ22+—x 1B, an
1+x 1+x

Dependence for determining the dimensionless amplitude of mass displacements m,:

232
myX, X 2 /7 B +1
= = , 12
S, myr 1+xy H?+Y? (12

dimensionless relative amplitudes of mass displacements mz; and m1,:

2 2
x x
LR N (L SV
g =Mo_ (1+x ) (1+x}’ﬁ1 )
1, myr H?_Y? :

The oscillation amplitudes x,, and x,, will be at their maximum in the system's resonant mode.

(13)

At resonance, the maximum oscillation amplitudes will reach the level b, =b, =0. In this case, the
oscillation amplitudes become infinite. For b, =< the oscillation amplitude is determined solely by
the value of b, and in the case of b, =, b =0 it also becomes infinite. This occurs because, at the
system becomes a single-mass system with mass M =m, +m,. The work of the dissipative force in
both cases (for b =0) does not manifest, as in the first case, the dissipative force equals zero, and in
the second, there is no relative displacement of the masses From this, it follows that at the value
0< b, <o, the work of the dissipative force will be maximal, and the resonant oscillation amplitude

of the second mass will take its minimum value. In the system's resonant modes, the energy parameters
are determined as follows: the work performed by the external harmonic force is equal to the work
done on the first mass:

Ap = TF X sing;. (14)
At resonant frequencies @, and @y, :
‘sin P, ‘ = ‘sin Proy, | =1-
The energy dissipated in the system is
AE = 70 b +by(x, =)’ | (15)
Equating expressions (14) and (15) in the resonance mode, we get the formula:

Fy
Xo1 = 2>
b, +bo, ((xoz/xm) - 1)

which will be maximum at x,, = x,,, in the case of infinitely large values of stiffness C, or damping

(16)

b, , equation (16) takes the form:
Xo1p = Fo / bo, . (17)

For a two-seat system with small dissipation, in the case of a force acting on one of the masses (for
example, m;) for a given amplitude of oscillations of this mass, the ratio of the amplitudes of
oscillations in the resonance mode is determined only by the parameters of the second mass and the
ratio between the masses and the coefficient b, . For a resonance at a frequency close to the partial

frequency of the mass m, on which the force Fj acts, the difference between the inertial force acting

on the second mass m, and the elastic force is not zero. Therefore, the effect of dissipation is
negligible. In the case of resonance at the frequency caused by the second mass m;, the role of
scattering forces increases. The damping associated with the mass m; has a significant effect on the



22 ISSN 2410-2547

Onip matepiaiis i Teopist ciopy/Strength of Materials and Theory of Structures. 2024. Ne 113

frequency of the first resonance @, . But in terms of frequency @y, , its effect is not significant.

Applying the above dependencies, an algorithm for calculating on a PC was compiled. As an example,
the movement of masses m, and m, (Fig. 2, a), calculations of energy indicators of a vibration unit and
graphs of amplitude and frequency characteristics of a vibration unit are constructed (Fig. 2, b).

In steady-state oscillations, the average energy circulating in the system is conserved. Each period, the
source replenishes energy expenditure according to formula (15) for a steady state, the energy dissipation
must be equal to the work done during that period by an external force F;, applied to the system.

s i kA

(2)

-Xol .’I' \
-Xo2 2 | i

a7 Sy
(b)
Fig. 2. Amplitudes of mass oscillations m; and m, and graph of the amplitude
and frequency response of the vibration installation

Research and determination of energy parameters of a vibration percussion installation

The design scheme of the vibration percussion system is reduced to a single one by reducing the
two-seat circuit (Fig. 3).

al
x a=f(@
e S S x=f{)
w @ @ -
¥ " t
'
$ Co . t t
////f//////////f/!///f /////.—’/;‘///f////////////// . s =
- Ef - T
(a) (b)

Fig. 3. Vibration shock installation: (a) - design model;
(b) - change of displacement and acceleration during the period of oscillation

Here m is the mass of the working body, which includes the mass of the mold with the concrete
mixture; ¢, — stiffness coefficient of the supporting elements of the installation; c; is the stiffness
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coefficient of the mass oscillation limiter m; Fj is the amplitude of the external force of the vibration
exciter; x - displacement; a - acceleration. The period of oscillation 7" will consist of two parts — the
detached motion of the mass in time 7, and the motion in contact f,: T =t +¢,. Since the stiffness
coefficient of vibration isolating supports: ¢; >¢, (usually ¢/c,=7...10), the half-span of the
oscillations will differ significantly from each other: x, > x, . Accordingly, accelerations, as the second
derivatives of displacement, will have a significant difference from each other a, >a, (usually
a,/a, =3...5, see Fig. 3, b). This asymmetry of accelerations is the main criterion for the effectiveness

of the use of vibration shock modes in machines for compaction of building mixtures, since the
significant forces that arise at the moment of impact coincide with the weight forces of the treated
medium, which leads to auxiliary compression forces, and hence compaction of the mixture. In
contrast to the dependence (5), which takes into account the wave phenomena in the mixture in the
harmonic mode, the coefficient a, for the vibration shock action will have a different form:

at 0<r<¢,

(ash2ah + Bsin2f,h) 1
o, = , (18)
h(e + B*)(ch2eh + cos 2h) (7, + 7,)
at ¢ <t<T
B (osh2ath + Bsin2Bh) T, (19)

o, = .
" (e + B*)(ch2ah+cos2ph) (7, + 1)

That is, in the equations of motion, the effect of the concrete mixture on the dynamics of the
vibration unit at each stage will be different.

Comparing dependencies (18) and (19) with (5), when 7, = 7, (the symmetric law of motion), the
dependencies for determining reactive resistance coincide. The setup is under the influence of a
constant force @, the directional harmonic force F(f) and the reaction of an elastic

limiter £, = ¢yx +signxR(x) , that is, we provide for the consideration and dissipation of energy.

Provided that the elastic coefficient of the supports c, is calculated based on the vibration isolation
condition, we assume its effect is absent, acting on the mass mmm during its contact intervals with the
elastic limiter. Then, the differential equations describing the motion of the system at the stages of
contact with the limiter and separation from it are as follows:

mx=F,, —c,x—signxR(x)+ Fy(t) at x>0,

mi=1F, +F,(t) at x<0
or
¥+ A%x = APA—m”lsigniR(x) —m ™ F (1), (20)
= VPA+m ' F(r), 1)

where is A=F,, [c; the amount of compression of the limiter by a constant force Q; A=,/c;/m -

cyclic frequency of natural oscillations of the installation in contact with the limiter; m - mass of the
installation.

To find the equations of the skeletal lines of a vibration installation, consider its free oscillations in
the absence of the inelastic resistance of the limiter. At the same time, the differential equations of
motion of the vibration installation are presented in the following form:

¥+ A%x=A%A at x>0, (22)
¥=A°A at x<0. (23)
For convenience, we denote 2¢ the duration of the movement of the mass of the installation in

contact with the limiter for one period T of its free oscillations and through 2¢#, the duration of its

movement in isolation from the limiter.
The periodic solution of differential equations (22) and (23) is written as follows:
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R [cos At —1,) — cos A, | at 0<1<21,, (24)
cos At

x= AZA[(t* —)2-£ /2] at 0<1,<21,. 25)
From the equality of the velocities of the vibration installation at the moment of its transition from
movement in contact with the limiter to movement in isolation from it, we get
Aty = —tan Ay,. (26)
Let's make an obvious equation
T =271/ w, =2t +21,, 27)
where @, is the conditional cyclic frequency of natural oscillations of the vibrator with its separation
from the limiter. From formula (27) we get
_A _An—tandy . (28)
N /4
The parameter u is equal to the ratio of the period of oscillation of the mass of the vibration unit in
the absence of contact with the limiter to the period of its natural oscillations in the presence of contact
with the limiter. Equation (28) allows us to find Af, at any point in time 1 < oo,

Now let's derive the formulas that characterize movements with a break from the limiter. On the
basis of the equations of motion (25) and (26) we obtain

aK/a = kO (;u): (29)
a=4ks* (WA, (30)
where a, is the maximum compression of the limiter; a is the amplitude of oscillations of the
vibration installation, which is equal to half of the range of oscillations.
4cos At At
ky(u)=———"L=2| 1-cotg® =L |. 31
ey ( g 2) 31)

If in formula (30) we take A = const , then we get the first skeletal line of the vibration installation,
which corresponds to this A. The first skeletal line is important because in the vicinity of this line there
will be the first amplitude curve of the vibration installation, which reflects the dependence of the
amplitude of its forced oscillations on the period of harmonic force. If we assume in formula (30) that
U= const, we get the second skeletal line of the vibration installation. In the vicinity of this line there

will be the second amplitude of the vibration curve, reflecting the dependence of the amplitude of forced
vibrations of the vibration installation on the value A of the gap of a given period of harmonic force.

rm
>

0 02 ot 06 08 10 12 A

(b)
Fig. 4. Skeletal and amplitude curves of the vibration installation: (a) at A/ a,=1,36,(b)at u=15

Fig. 4, a shows the first — OB, and Fig. 2, b — the second — O/] skeletal lines of the vibration
installation. The first - ABC and the second amplitude curves of the AJI)K are also shown there. Point
C of the intersection of the amplitude curves with the skeletal lines corresponds to the resonant
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oscillations of the vibration system. S, there are two ways to implement the resonance mode: by
changing the frequency of the harmonic force @ at the same A =const time, or by changing A it
with a constant frequency of the harmonic force @ . The second method is technically simpler, due to
the change A than the frequency @ . The curve of dependence of the amplitude of forced oscillations
of the vibration installation on A or the weight Q is the curve of adjustment of the parameters of the
vibration installation.

To determine the energy balance of a vibration system, the expression for the harmonic force acting
during one period is written as follows:

F(t)=—Fysin[@(t—t)+¢ | at 0<r<21,, (32)

F(t,) = Fysin[a(t, —t,)+ @] at 0<1,<21,. (33)

Here, formula (32) determines the harmonic force for the stage of motion of the vibration unit in

contact with the limiter, and formula (33) determines it in isolation from the limiter. The angle ¢

included in the formulas is less than the phase displacement angle between the harmonic force and the

forced oscillations of the vibration installation on 7/2. In contrast to the phase shift angle, which

varies from 0 to 7z the angle ¢ will vary in the range from —7/2 to z/2. For resonant vibrations of
the vibrator ¢ =0.

The expression in order for the harmonic force to ensure the movement of the vibration unit in one
period is written in the form:

A(F) =3 F(t)dx + 132 F(1,)dx. (34)
As a result of the solution, we get:
A(F) = ky(v)Fyacos ¢, (35)
where

2
k()= @[%(V sin @t; — tant; cos wtl) + 2v(v sinwt; — tan pt, cos wtl)] =

=m2‘}—3x(\/sinp—tl— tan pt, cosp—tl). (36)
2 yv-1 v v

The graph k& (v) of the function depending on pt; (Fig. 5) shows that the value k& (v) for
1<v<2,57 . If the condition that v =1, then k; =7z, which corresponds to the harmonic oscillations of
the vibration installation, is satisfied.

Pl
2.2
20
ky(v) ™
33 18 —
/—\k-](v}
3116 \\_\
—__‘_\‘\

29 1 12 1 16 18 20 22 2L v

Fig. 5. Graphs of dependence kj(v) and magnitude pt#; on v

Let us make an expression for the energy dissipated in the elastic limiter for one period of
oscillation of the vibration unit:



26 ISSN 2410-2547
Onip matepiaiis i Teopist ciopy/Strength of Materials and Theory of Structures. 2024. Ne 113

2 2
cza cza
W=y -5 =y (v)—2—.
14 ) Wy (V) )
The condition for the energy balance of the vibrator is as follows:
AF)=W.
Or, substituting the values of A(F) and W we get equality:

ke (V) Fy cos @ =1/2 kg (v)ega. (38)
Based on equation (38), the following formula can be obtained for the amplitude of vibrations of
the vibrator:

(37

__2k()
whks (U
where a, = F, / (mw*) is the amplitude of oscillations of the vibration installation out of contact with

the oscillation limiter.
In the case of using an unbalanced oscillation exciter, the forcing force:

cos@a,,, (39)

= mroa)2 ,
where my, is the static angular momentum of the mass of the imbalances.

Then the expression for a, will take the form

mr,
=0 40
M, (40)
where Mj is the oscillating mass of the vibration installation.
Let's also make a formula for the average power, inelastic resistance of the oscillation limiter:
Weo v 5 YV 2,2 2,2
P=—=—"c.a,0o=—"—uky(v)a o m. 41
o ar oY%k A M 0 ( ) ( )
Energy dissipated in the volume of the concrete mixture when it is compacted
W, = Edm, 42)

where E is the specific energy (J/kg) spent on compaction of a concrete mixture with a mass of 7.
Conclusions

1. The equations of motion of a two-seater vibrating unit have been compiled and solved, in which
the discrete parameters of the machine and the parameters of the concrete mixture are distributed.
Energy parameters and dynamic parameters have been investigated and determined.

2. The influence of energy dissipation on the motion of the vibration system under study has been
revealed. Thus, for a two-seat system with a small dissipation, in the case of a force acting on one of
the masses (for example, m;) for a given amplitude of oscillations of this mass, the ratio of the
amplitudes of oscillations in the resonance mode is determined only by the parameters of the second
mass and the ratio between the masses and the coefficient b,.

3. When resonating at a frequency close to the natural frequency of the mass m; on which the force
Fo; acts, the difference between the inertial force acting on the second mass m, and the elastic force is
not zero. Therefore, the effect of dissipation is negligible. In the case of resonance at the frequency
caused by the second mass m,, the role of scattering forces increases.

4. The energy parameters of the vibrating percussion system have been investigated and
determined. The equations of motion of a vibro-percussion installation as a model with discrete-
continuous parameters are given and solved.

5. Amplitude and skeletal characteristics are given, the influence of parameters on their change is
determined, and two ways of implementing the resonance mode are revealed: by changing the
frequency of the harmonic force, and at the same time the possibilities of controlling the movement of
the installation by changing the frequency and the value of compression of the limiter by a constant
force are determined.
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6. Formulas for determining the energy parameters of a vibrating percussion installation, which
take into account the discrete parameters of the machine and the distributed parameters of the concrete

mixture, have been obtained.
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Cmamms nadiviwna 23.09.2024

Hasapenko 1.1, 3anpusooa A.B., bondapenxo A.€., Cuocap B.C.
BU3HAYEHHS EHEPTETUYHUX MOKA3HUKIB BIGPAIITHAUX MAIIWH JJIsI YINIJIBHEHHSA TA
®OPMYBAHHS BETOHHUX BUPOBIB 3A PI3HOIO CHJIOBOIO ®OPMOIO HABAHTAXKEHHSI

AHoTanisi. B po6oTi focinikeHo i BU3HAYEHO NapaMeTpu i eHepreTH4Hi MOKa3HUKK BiOpallitHNX MAIIMH 3 TapMOHIHHIUMHI
Ta BIOpOYJapHUMH PEeKUMAaMHU PyXy A YUIUIbHEHHS OETOHHHMX cyMiliell. PiBHAHHA pyXy BiOpauiiHOi cucteMu «pobouuit
OpraH MalllMHU- YIIUIBHIOIOYE CEPEIOBUILE» CKIIAJICH]I HA OCHOBI TOPUIHOI AMCKPETHO-KOHTHHYAJILHOT MOJIEII, sIKa aJIeKBaTHO
OIUCY€E pEaJIbHUIM TPOLEC YIIIBHEHHS CyMilli. 3AiHCHEHI pO3paxyHKH 3a OTPUMAaHMMH AQHAIITHYHUMHU 3AJICKHOCTIMHU JJIS
BU3HAYCHHS aMIUITY]] KOJMBAHb Ta €HEPrii Ha KOJMBAHHS JIBOMICHOI CUCTEMHM JI03BOJIMIIM 3/1iHCHUTH OLIHKY 1X 3MiHM B PI3HUX
pexumax pobotu. Tak, nepumit pe3onanc OyB 3adikcoBaHHi Ha yacToTi Sri, a Apyrui Ha yacrori 35ru. dus Ail 30BHIIHBOT
CHJIM Ha MepIly Macy PEe30HAHCHUN PEXUM BH3HAYAETHCS MapaMeTpaMy APYroi MacH, B TOMY 4YUCIi KoedilieHTOM po3CisHHS
eHeprii Ta CHIBBIJHOIICHHSAM MK MMM MacaMu. Bu3HaueHi yMOBHM BIUIMBY AMCHIIALIi B PEKUMI PE30OHAHCY Ha 4YacToTi,
OJIM3bKiM 10 4acTKOBOI BJIACHOI YacTOTH TOI Macu , Ha SIKy Ji€ 30BHIMIHA cuia.. JIOCHi/KEHO Ta BHU3HAYEHO EHEpreTHYHi
napaMeTpu BiOpoymapHoi ycraHoBku. I[IpuBeneHi Ta BupilleHi piBHSHHA pyXy BiOpOyZapHOi YCTaHOBKH, SK MoAeni 3
JIACKPETHO-KOHTUHYaIbHUMH TTapaMeTpaMH.

[puBeneHo aMIUIITY/iHI W CKEJIETHI XapaKTepHUCTHKU, BU3HAYCHO BIUIMB MapaMETpiB Ha iX 3MiHY i BUSBJICHI JiBa crocodu
peasizarii pe30HaHCHOr0 PeXUMY: HUIIXOM 3MiHM YaCTOTH TapMOHIMHOI CHIIM Ta NPH LIbOMY BU3HAYEHI MOXIIMBOCTI K€pyBaHHS
PYXOM YCTaHOBKM 3MIiHOI 4YacCTOTH 1 BEJMYMHA CTHCHEHHS oOMexyBauya IOCTiHHOIO cwio. Otpumani Qopmynu uis
BHU3HAYCHHS CHEPreTUYHUX IIOKA3HUKIB BIOPOYHapHOI YCTaHOBKM, $Ki BPAaxXOBYIOTh JMCKPETHI NapaMeTpu MallMHU Ta
Ppo3MoiJeHi napaMeTpu OETOHHOT Cymili.

KarodoBi cjoBa: JHMCKPETHO-KOHTHMHYyallbHA MOJEJNb, JABOMiCHAa BiOpauiiiHa ycTaHOBKa, BIOpOyJapHa yCTaHOBKA,
YUIUIbHEHHS, CYMilll, eHepris, pe30HaHC, MapaMeTpH, aMILTiTy/a, Y4aCTOTA KOJIUBAHb.

Nazarenko 1.1, Zapryvoda A.V., Bondarenko A.Z., Slyusar V.S.
DETERMINATION OF ENERGY PARAMETERS OF VIBRATING MACHINES FOR COMPACTION AND
FORMATION OF CONCRETE PRODUCTS ACCORDING TO DIFFERENT POWER FORM OF LOAD

Abstract. The paper investigates and determines the parameters and energy indicators of vibrating machines with harmonic
and vibroshock modes of motion for compaction of concrete mixtures. The equations of motion of the vibration system "working
body of the machine - compaction medium" are made on the basis of a hybrid discrete-continuum model, which adequately
describes the real process of compaction of the mixture. Calculations were made on the basis of the obtained analytical
dependencies to determine the amplitudes of oscillations and the oscillation energy of a two-seater The systems made it possible
to assess their changes in different modes of operation. Thus, the first resonance was recorded at a frequency of 5 Hz, and the
second at a frequency of 35 Hz. For the action of an external force on the first mass, the resonance mode is determined by the
parameters of the second mass, including the energy dissipation coefficient and the ratio between these masses. The conditions
for the influence of dissipation in the resonance mode at a frequency close to the partial natural frequency of the mass on which
the external force acts have been determined. The energy parameters of the vibrating percussion system have been investigated
and determined. The equations of motion of a vibro-percussion installation as a model with discrete-continuous parameters are
given and solved.

Amplitude and skeletal characteristics are given, the influence of parameters on their change is determined, and two ways of
implementing the resonance mode are revealed: by changing the frequency of the harmonic force, and at the same time, the
possibilities of controlling the movement of the installation by changing the frequency and the value of compression of the
limiter by a constant force are determined. Formulas for determining the energy parameters of a vibro-percussion installation,
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which take into account the discrete parameters of the machine and the distributed parameters of the concrete mixture, have been
obtained.

Keywords: discrete-continuous model, two-seat vibration unit, vibration shock unit, compaction, mixture, energy,
resonance, parameters, amplitude, oscillation frequency.

VK 539

Hasapenko 11, 3anpusoda A.B., bonoapenxo A.3., Cmocap B.C. BU3Ha4YeHHs] eHepreTHYHUX NapameTpiB BiOpamiiinux
MAIIMH 115 YIIiIbHEHHS Ta ¢GopMyBaHHS O0OeTOHHHUX BHPOGIB NMpH Pi3HHX cHJIOBHMX (opMax HaBaHTaxeHHs // Omip
MarepiaJiB i Teopist ciopya: Hayk.-TexH. 30ipH., K.: KHYBA, 2024. — Bun. 113. - C. 18-28.

Y cmammi docniooceno ma eusnaueno emepeemuuni napamempu ma NOKA3HUKU GIOpAYINHUX MAWIUH 3 2APMOHIUHUMU MA
YOapHO-6IOpaAYIiHUMU peXCUMaMy pyXy Ol YWitbHeHHs: bemonnux cymiwell. /[na ananisy pieHanv pyxy eiopayiunoi cucmemu
«po60YULl Op2aH MAWUHY — cepedosuLye VIYITbHEHHAY SUKOPUCIIAHO 2IOPUOHY OUCKPEeMHO-KOHMUHYATIbHY MOOelb, Wo 003601€
peanicmuuno mooenosamu npoyec ywinbHenus. Pospaxynku noxasamu pesonaucui uacmomu Ha pieni 5 Iy i 35 Ty, npuuomy
napamempu Macu cucmemu 6nIU6AIOMb HA PO3CIIOBAHHA eHep2ii ma pedicuMi pe30HAHCY.

Tab6u. 0. Puc. 5. Bi6niorp. 8.

UDC 539

Nazarenko 11, Zapryvoda A.V., Bondarenko A.Z., Slyusar V.S. Determination of energy parameters of vibrating machines
for compaction and formation of concrete products according to different power form of load // Strength of Materials and
Theory of Structures: Scientific-and-technical collected articles. — K.: KNUBA. 2024. — Issue 113. —P. 18-28.

The paper investigates and determines the energy parameters and indicators of vibrating machines with harmonic and
vibroshock modes of motion for compaction of concrete mixtures. A hybrid discrete-continuum model was used to analyze the
motion equations of the vibration system "machine's working body - compaction medium," allowing for realistic compaction
process simulations. Calculations reveal resonance frequencies at 5 Hz and 35 Hz, with energy dissipation and resonance
modes influenced by system mass parameters.

Tab. 0. Fig. 5. Ref. 8.
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