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The paper has proposed a mathematical model for parametric optimization problem of the
steel lattice portal frame. The design variable vector includes geometrical parameters of the
structure (node coordinates), as well as cross-sectional dimensions of the structural members. The
system of constraints covers load-carrying capacities constraints formulated for all design sections
of structural members of the steel structure subjected to all ultimate load case combinations. The
displacements constraints formulated for the specified nodes of the steel structure subjected to all
serviceability load case combinations have been also included into the system of constraints.
Additional requirements in the form of constraints on lower and upper values of the design
variables, constraints on permissible minimal thicknesses, constraints on permissible maximum
diameter-to-thickness ratio for the structural members with circle hollow sections, as well as the
conditions for designing gusset-less welded joints between structural members with circle hollow
sections have been also considered in the scope of the mathematical model. The method of the
objective function gradient projection onto the active constraints surface with simultaneous
correction of the constraints violations has been used to solve the formulated parametric
optimization problem. New optimal layouts of the steel lattice portal frame by the criterion of the
minimum weight, as well as minimum costs on manufacturing and erection have been presented.

Keywords: optimization, steel lattice frame, nonlinear programming, strength, buckling,
stiffness, gradient projection method, finite element method, numerical algorithm.

Introduction. Over the past 50 years, numerical optimization and the finite
element method have individually made significant advances and have
together been developed to make possible the emergence of structural
optimization as a potential design tool. In recent years, great efforts have been
also devoted to integrate optimization procedures into the CAD facilities. With
these new developments, lots of computer packages are now able to solve
relatively complicated industrial design problems using different structural
optimization techniques.

Applied optimum design problems for bar structures in some cases are
formulated as parametric optimization problems, namely as searching problems
for unknown structural parameters, which provide an extreme value of the
specified purpose function in the feasible region defined by the specified
constraints [1]. In this case, structural optimization is performed by variation of
the structural parameters when the structural topology, cross-section types and
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node type connections of the bars, the support conditions of the bar system, as
well as loading patterns and load design values are prescribed and constants [2].

Kibkalo et al. in the paper [3] formulated a parametric optimization
problem for thin-walled bar structures and considered methods to solve them.
The searching for the optimum solution has been performed by varying the
structural parameters providing the required load-carrying capacity of
structural members and the minimum value of manufacturing costs.

Serpik and Alekseytsev in the paper [4, 5] developed a methodology for the
optimal design of normally operated steel frames considering material and
social losses from the possible failure of structural members. A method for
parametric optimization of steel frame systems during selection of rod cross-
sections and structure reliability levels has been developed. The optimization
problem has been formulated as a structure manufacturing costs minimization
problem taking into account costs on recover the damages caused by any
material and social losses in the event of possible malfunctions and damage.
Constraints on the strength, stiffness, and stability of the frame have been
included into consideration. An iterative procedure for searching for optimum
solution has been also proposed.

Serpik and Averin proposed a computational scheme for the optimal design
of steel flat frames made of thin-walled rods with closed cross sections [6]. The
structural member’ total cost has been minimized by searching for the materials’
grades and the rods’ cross sections sizes on the variable parameters’ discrete sets.
Active constraints on the overall structural system’s stability, local stability of
the rods’ walls, strength and stiffness have been taken into account.

Sergeyev et al. in the paper [7] formulated a parametric optimization problem
with constraints on faultless operation probability of bar structures with random
defects. The weight of the bar structures has been considered as the objective
function. Initial global imperfections have been considered as small independent
random variables distributed according to normal distribution law, as well as
buckling load value has been also considered as a random variable.

The mathematical model of the parametric optimization problem of structures
includes a set of design variables, an objective function, as well as constraints,
which reflect generally non-linear dependences between them [8]. If the purpose
function and constraints of the mathematical model are continuously differentiable
functions, as well as the search space is smooth, then the parametric optimization
problems are successfully solved using gradient projection non-linear methods [9].
The gradient projection methods operate with the first derivatives or gradients only
both of the objective function and constraints. The methods are based on the
iterative construction of such a sequence of the approximations of design variables
that provides convergence to the optimum solution (optimum values of the
structural parameters). Additionally, a sensitivity analysis is a useful optional
feature that could be used in scope of the numerical algorithms developed based on
the gradients methods [10, 11].

In this paper, steel lattice portal frame is considered as research object, which
investigated for the searching for optimum parameters of the structural form. The
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following research tasks are formulated: to develop a mathematical model for
parametric optimization of the considered steel structures taking into account
load-carrying capacities and stiffness constraints; to propose a numerical
algorithm for parametric optimization of the steel structures based on the
gradient projection method; to confirm the validity of the optimum solutions
obtained using the proposed methodology based on numerical examples.

1. Problem formulation for parametric optimization of steel
structures. Let us consider a parametric optimization problem of a structure
consisting of bar members. The problem statement can be performed taking
into account the following assumptions widely used in structural mechanic
problems: the material of the structure is ideal elastic; the bar structure is
deformable linearly; external loadings applied to the structure are quasi-static.

Let us also formulate the following pre-conditions for calculation: cross-section
types and dimensions of structural members are constant along member lengths;
external loadings are applied to the structural members without eccentricities
relating to the center of mass and shear center of its cross-sections; an additional
restraining by stiffeners are provided in the design sections where point loads
(reactions) applied with the exception of cross-section warping and local buckling
of the cross-section elements; load-carrying capacity of the structural joints, splices
and connections are provided by additional structural parameters do not covered by
the considered parametric optimization problem.

A parametric optimization problem of the structure can be formulated as
presented below: fo find optimum values for geometrical parameters of the
structure and member’s cross-section dimensions, which provide the extreme
value of the determined optimality criterion and satisfy all load-carrying
capacities and stiffness requirements. We assume, that the structural topology,
cross-section types and node type connections of the bars, the support
conditions of the bar system, as well as loading and pre-stressing patterns are
prescribed and constants.

The formulated parametric optimization problem can be considered
integrally using the mathematical model in the form of the non-linear
programming task including an objective function, a set of independent design
variables and constraints, which reflect generally non-linear dependences
between them. The validity of the mathematical model can be estimated by the
compliance of its structure with the design code requirements.

The parametric optimization problem of steel structures can be stated in the
following mathematical terms: to find unknown structural parameters

X={XI}T, t=1,N, (N, is the total number of the design variables),

providing the least value of the determined objective function:

f1=f(X")= min /(X), (1.1)
in a feasible region (search space) I defined by the following system of
constraints:

w(X)={y, (%) =01k =T N,c}: (1.2)
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(P(X/)z{(bn(/\;)smn=NEC+LN1C}; (1.3)
where X is the vector of the design variables (unknown structural parameters);
fs w., @, are the continuous functions of the vector argument; X" is the

optimum solution or optimum point (the vector of optimum values of the structural
parameters); f is the optimum value of the optimum criterion (objective

function); N,. is the number of constraints-equalities v/, ()? ) , which define
hyperplanes of the feasible solutions; N,. is the number of constraints-inequalities
®, ()? ) , which define a feasible region in the design space 3.

The vector of the design variables comprises of unknown geometrical

- T
parameters of the structure X = {XG’Z} » =1, N,; , and unknown cross-

. . . e T
sectional dimensions of the structural members X = {X Cs’a} , a=1LNy

X = (Ko ko) ={{Xe, ) X)) s (1.4)
where N, . is the total number of unknown node coordinates of the steel
structure; N, . is the total number of unknown cross-sectional dimensions of
the structural members, N, ; + Ny s =N, .

The specific technical-and-economic index (material weight, material cost,
construction cost etc.) or another determined indicator can be considered as the
objective function Eq. (1.1) taking into account the ability to formulate its

analytical expression as a function of design variables X .

Load-carrying capacities constraints (strength and stability inequalities)
formulated based on the design code requirements [12] for all design sections
of the structural members subjected to all design load combinations at the
ultimate limit state as well as displacements constraints (stiffness inequalities)
for the specified nodes of the bar system subjected to all design load
combinations at the serviceability limit state should be included into the
system of constraints Egs. (1.2) — (1.3). Additional requirements, which
describe structural, technological and serviceability particularities of the
considered structure can be also included into the system Egs. (1.2) — (1.3).

The design internal forces in the structural members used in the strength
and stability inequalities of the system Eqgs. (1.2) — (1.3) are considered as state

variables depending on design variables X and can be calculated from the
following linear equations system of the finite element method [13]:

K(XGaXCS)XEULS,k=13ULs,k(XG)a k=1LN. (1.5)
where K()? o X CS) is the stiffness matrix of the finite element model of the

bar system, which should be formed depending on the unknown (variable)
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cross-sectional dimensions of the structural members X as well as

cs o

unknown (variable) node coordinates of the structure X ; Duis.i ()? G) is the

column-vector of the node’s loads for k™ design load combination of the
ultimate limit state, which should be formed depending on unknown (variable)

node coordinates of the structure X ; Zysy 18 the result column-vector of the
node displacements for & ™ design load combination of the ultimate limit state,
Zusk = Lygms ()?G, )?CS)z Ziins ()?), N&® is the number of the design
ultimate load combinations. For each ;™ design section of ;™ structural

member subjected to & " ultimate design load combination the design internal
forces (axial force, bending moments and shear forces) can be calculated
depending on node displacement column-vector Z , .

The node displacement of the bar system used in stiffness inequalities of
the system Egs. (1.2) — (1.3) are also considered as state variables depending

on design variables X and can be calculated from the following linear
equations system of the finite element method [13]:

K(XGaXCS)XZSLS,k=13SLS,A»(XG)’ k=LN; (1.6)
where pg, ()?G) is the column-vector of the node’s loads for & ™ design

load combination of the serviceability limit state, which should be formed

depending on unknown (variable) node coordinates of the structure X, ; 7,

is the result column-vector of the node displacements for k™ design load
combination of the serviceability limit state,

Zass = Lapws ()?6, )?CS)zlffESMk ()?), NJZ is the number of the design

serviceability load combinations. For each m™ node of the finite element
model subjected to k™ serviceability design load combination the design
vertical and horizontal displacements can be calculated depending on node
displacement column-vector Zg, .

2. An improved gradient projection method for solving the formulated
parametric optimization problem. The parametric optimization problem stated
as non-linear programming task by Egs. (1.1) — (1.3) can be solved using a gradient
projection method. The method of objective function gradient projection onto the
active constraints surface with simultaneous correction of the constraints
violations ensures effective searching for solution of the non-linear programming
tasks occurred when optimum designing of the building structures [14, 15].

The gradient projection method operates with the first derivatives or
gradients only of both the objective function Eq.(1.1) and constraints
Egs. (1.2) — (1.3). The method is based on the iterative construction of such

sequence Eq. (2.1) of the approximations of the design variables X = {XZ}T ,
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1=1,N, , that provides the convergence to the optimum solution (optimum
values of the structural parameters):

X/Hl =X/t+AA7ta (21)

where )?t ={XZ}T, 1=1,N, is the current approximation to the optimum

solution X~ that satisfies both constraints-equalities Eq. (1.2) and constraints-
inequalities Eq. (1.3) with the extreme value of the objective function

Eq. (1.1); Af( ={AXZ} ,i=LN, N, , is the increment vector for the current
values of the design variables X t is the iteration’s index. The start point of

the iterative searching process X ._, can be assigned as engineering estimation

of the admissible design of the structure.
The active constraints only of constraints system Egs. (1.2) — (1.3) should
be considered at each iteration. A set of active constraints numbers A

calculated for the current approximation X . to the optimum solution (current
design of the structure) is determined as:

v (X)|z 2| n={Notn | 4,(X)2—]. @2)

where ¢ is a small positive number introduced here in order to diminish the
oscillations on movement alongside of the active constraints surface.

A=xuUn, K={K“

The increment vector AX, for the current values of the design variables

X . can be determined by the following equation:
AX, = AX' +AX', (2.3)
where AX' is the vector calculated subject to the condition of elimination the
constraint’s violations; AX' is the vector determined taking into consideration

the improvement of the objective function value. Vectors AX' and AX' are
directed parallel and perpendicularly accordingly to the subspace with the
vectors basis of the linear-independent constraint’s gradients, such that:
— T —
(AX]) AX!=0. (2.4)

The values of the constraint’s violations for the current approximation X,

of the design variables are accumulated into the following vector:
V= (l;/K( )VKeK 9, ( )Vnen)
Let us introduce a set L, L < A, of the constraint’s numbers, such that

the gradients of the constraints at the current approximation )?t to the
optimum solution are linear-independent.
Component AX ' is calculated from the equation presented below:
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AX| =[Vo]a,, 2.5)
v, ¢,

and —, here

1 l

where [Vgo] is the matrix that consists of components

z—l N,, keL, neL; [, is the column-vector that defines the design
variables increment subject to the condition of elimination the constraint’s
violations. Vector fi, can be calculated as presented below.

In order to correct constraint’s violations V, vector AX'| to a first
approximation should also satisfy Taylor’s theorem for the continuously
differentiable multivariable function in the vicinity of point )?t for each
constraint from set L , namely:

-V =[Vo] AX'. (2.6)

With substitution of Eq. (2.5) into Eq.(2.6) we obtain the system of
equations to determine column-vector /i, :

[Vgo]r [Vgo]ﬁl =-V. (2.7
Component AX. ! is determined using the following equation:
AX! =Ex py, =E(Vf -[Voli ), (2.8)

where Vf is the vector of the objective function gradient in the current point

(current approximation of the design variables) X, .5 Py, 1s the projection of
the objective function gradient vector onto the active constraints surface in the
current point X 4, is the column-vector that defines the design variable’s

increment subject to the improvement of the objective function value. Column-
vector [, can be calculated approximately using the least-square method by

the following equation:

[Voli ~Vf, (2.9)
or from the equation presented below:
[Vo] [Veli =[Ve] Vf; (2.10)

where £ is the step parameter, which can be calculated subject to the desired
increment Af of the purpose function on movement along the direction of the

purpose function anti-gradient. The increment Af can be assign as 5...25%
from the current value of the objective function f ()? t) :
&y

af =&(V7) V7, 5—( s

2.11)



52 ISSN 2410-2547
Omip matepianiB i Teopis cropya/Strength of Materials and Theory of Structures. 2021. Ne 107

where in case of minimization Eq. (1.1) Af and & accordingly have negative
values. The parameter £ can be also calculated using the dependency
presented below:

Af
S=——F > (2.12)
(pr) vf
that follows from the condition of attainment the desired increment of the
objective function Af on the movement along the direction of the objective

function anti-gradient projection onto the active constraints surface. Step
parameter £ can be also selected as a result of numerical experiments

performed for each type of the structure individually [16, 17].
Using Egs. (2.5) and (2.8), Eq. (2.3) can be rewritten as presented below:
AX, =[Vo] i, +&(V/ -[Ve] i), (2.13)
or
AX, =ENf+[Vo](, ¢ ii.), (2.14)
where column-vectors i, and i are calculated using Eq. (2.7) and Eq. (2.9)

or Eq. (2.10), respectively.
The linear-independent constraints of the system Egs. (1.2) — (1.3) should
be detected when constructing the matrix of the active constraints gradients

[Ve] used by Eq. (2.7) and Eq. (2.9) or Eq. (2.10). Selection of the linear-
independent constraints can be performed based on the equivalent

transformations of the resolving equations of the gradient projection method
using the non-degenerate transformation matrix H, such that the sub-diagonal

elements of the matrix H[Vgo] equal to zero. An orthogonal matrix of the
elementary mapping (Householder’s transformation) [18] has been used to
select linear-independent constraints of the system Eqgs. (1.2) — (1.3) as well as
to form triangular structure of the nonzero elements of matrix H[Ve] [14].

Using Householder’s transformations described above triangular structure
of the nonzero elements of matrix H[V¢] is formed step-by-step. Besides,
Eq. (2.7) and Eq. (2.9) can be rewritten as follow:

([Vgo]T H’ )(H[Vgo])ﬁl -V, (2.15)

H[Vo]i ~HVf . (2.16)

Equivalent Householder transformations of the resolving equations Egs. (2.15),

(2.16) have been proposed by the paper [14]. They increase numerical efficiency of
the algorithm developed based on the considered method.

In order to calculate column-vectors fi, and f, it is required only to

perform forward and backward substitutions in Eq. (2.15) and Eq. (2.16).
To accelerate the convergence of the minimization algorithm presented above,



ISSN 2410-2547 53
Omip marepianiB i Teopis cropyx/Strength of Materials and Theory of Structures. 2021. Ne 107

h ™ columns should be excluded from matrix H [Vgo] . These columns correspond
to those constraints from Eq. (1.3), for which the following inequality satisfies:

My —Ex ey, >0. (2.17)
As presented by the papers [14, 15], when u ,—&xpu, >0, then the

return onto the active constraints surface from the feasible region J is
performed with simultaneous degradation of the objective function value. At
the same time, in case of u,, —&xu, <0, both the improvement of the

objective function value and the return from the inadmissible region onto the
active constraints surface are performed.

When excluding 4™ columns from matrix H[Vgo] corresponded to those
constraints for which Eq. (2.17) is satisfied, the matrix (H[Vgo])ml with a
broken (non-triangular) structure of the non-zero elements is obtained. The set
L of the linear-independent active constraints numbers transforms into the set
L, respectively. At the same time, the vector of the constraint’s violations

V reduced into the vector V,_, accordingly. In order to restore the triangular

7

structure of the matrix (H[Vgo]) . with zero sub-diagonal elements, Givens

transformations (Givens rotations) [18] can be used.
Considering Givens transformations, Eq. (2.15) and Eq. (2.16) for column-

vectors (i, ), , and ( ﬁr)m] can be rewritten as:

(Vo] B") G'G(H[Ve)) (4., =-V..: @.18)

re

G(H[Ve]) (&) ~GHVS; (2.19)

Equivalent transformations of the resolving equations Egs. (2.18), (2.19)
using Givens rotations (transformations with matrix G ) ensure acceleration of
the iterative searching process Eq. (2.1) in those cases when Eq. (2.17) takes
into account due to decreasing the amount of calculations [14].

The main resolving equation of the gradient method Eq.(2.13) and
Eq. (2.14) can be rewritten as presented below:

AX, =(H[Ve]) (i), +&(V -(u[Ve])  (4),), (20
or

AX, =&V +(H[Ve]) (7)., -¢(i),,)- (2.21)
It should be noted that the lengths of the gradient vectors for the objective
function Eq. (1.1), as well as for constraints Egs. (1.2) — (1.3), remain as they
were in scope of the proposed equivalent transformations ensuring the

dependability of the optimization algorithm [14].
The determination the convergence criterion is the final question when

using the iterative searching for the optimum point Eq. (2.1) described above.
Considering the geometrical content of the gradient steepest descent method,



54 ISSN 2410-2547
Omip matepianiB i Teopis cropya/Strength of Materials and Theory of Structures. 2021. Ne 107

we can assume that at the permissible point )?t the component of the

increment vector A)?; for the design variables should be vanish, A)?; —0, in
case of approximation to the optimum solution of the non-linear programming

task presented by Egs. (1.1) — (1.5). So, the following convergence criterion of

the iterative procedure Eq. (2.1) can be assigned:

Ny

S(axh) <e, (2.22)
=1

1=

Ja%:]-

where ¢, is a small positive number. In the paper [14] the convergence criteria

for the iterative procedure Eq. (2.1) has been presented in detail.

3. Mathematical model for parametric optimization of the lattice
portal frame. A parametric optimization task for lattice portal frame of the
steel warehouse framework designed as repository for the granulated sulfur has
been considered. Building object locates in seaport Ust-Luga of Russian
Federation The general building sizes are length 247.25 m and width 69.0 m.
Steel framework of the building consists of portal frames with span 69.0 m
positioned along building length with bay 7.5 m.

Steel portal frames consist of the lattice structural members fabricated from
pipes with steel grade St20 according to design code [12]. Joints in the lattice
structural members were designed using welded connections without gussets.

There is a service platform at the level +28.25 m provided for supporting
the crane-loader and conveyor (see Fig. 3.1). The load-bearing structures of the
platform are suspended to the structural members of the portal frames. Welded
I-beams of this platform were manufactured from the universal steel sheets of
grade S245.

Design scheme of the steel lattice portal frame was assumed as a hinged-
bar structure with hinged column bases. Geometrical scheme of the portal
frame was described using the set of nodes and bars with orientation on
implementation of the finite element method for linear static analysis. Node
coordinates of the design scheme were determined in Cartesian coordinate
system and presented as expressions in dependence of geometrical design
variables of the optimization task.

Dead loads included self weight of the portal frame, roof purlins, roof
bracings, fire escape staircase and mezzanines, profiled panels which is used as
non-warmth-keeping walling as well as service loads on fire escape staircase and
mezzanines. Safety factors for the design loads and effects as well as safety
factor for the building responsibility were defined according to [12]. Live loads
(or technological loads) were accepted according to the target specification.
Calculation the design values for climate loadings has been performed according
to the requirements [12]. So, tree types of snow loads and two types of wind load
have been considered when optimum designing of the steel portal frames.

Design loads and effects have been combined in 16 design load case
combinations taken into account the combination factors according to
requirements of design code [12]. All loads and effects on the structure were
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presented as concentrated loads at the nodes and were determined analytically
depending on the variable parameters of the geometrical scheme.

Fig. 3.1. Assembling process on job site (Photo has been provided by V. Shymanovsky Ukrainian
Research and Design Institute of Steel Construction)

Mathematical model of the parametric optimization task for the steel portal
frame with lattice structural members has been formulated as nonlinear
programming task including the set of design variables, system of constraints
as well as specified purpose function.

3.1. Design variables. Parameters of the geometric scheme of the portal
frames have been considered as design variables. Variable parameters of the
geometrical scheme were building height at the eave node H_, and at the

ridge H_,, distance between upper and lower chords of the lattice rafter at the
eave node hop and at the erection joints 4,, h,, h, i h,, distance between
chords of the lattice column at the eave node bop and parameter b, (see

Fig. 3.2). Start values for the design variables were accepted according to the
design decision of the steel framework developed by Open Join-Stock
Company “V. Shymanovsky Ukrainian Research and Design Institute of Steel
Construction”, namely: H_, =39.58m, H_, =10.63m,

h,=h,=h;=h,=h,=b, =2.6m, b, =0.56 m. Additionally, cross-sectional

sizes of the structural members with circle hollow sections (CHS) for each
stiffness type were considered as design variables (see Table 3.1).



56

ISSN 2410-2547
Omip matepianiB i Teopis cropya/Strength of Materials and Theory of Structures. 2021. Ne 107

Table 3.1
Variable cross-sectional sizes for the CHS structural members of the portal
frame
Stiff- | Design Stiff- | Design
Destination and | ness | variables Start ness | variables Start
location of type | name, values, | type | name, values,
structural member| num- | diameterx | mmxmm | num- | diameterx | mmxmm
ber | thickness ber | thickness
1 d, xt, 299x25 7 dg xt, 299x16
2 d xt 299x14 8 dg xt, 299x10
Chords of the N A
lattice 3 dl ><t3 299X10 9 dg ><t9 299X10
structural 4 d, xt, 299x14 | 10 | dxt, | 299x14
members
5 d, xt; 299x14 | 11 d, xt, 180x12
6 dg %t 299x10 - - -
Elements of the 12 dy, 1, 152%38 14 dyy %t 102%5
lattice rafters 13 | d,xt, 121x8 _ _ _
. 15 dis %t 152x8 17 | d;;xt, | 180x12
Frame ridge
16 | dxt, 102x5 18 dgxty | 180x12
Elements of the | 19 | dioxty | 299x10 | 21 | dyxt, | 299x25
lattice columns | 20 | g xz,, | 299x25 | 22 | dy,xt, | 1025
Suspension arm
of the service 23 | d,;xt,; | 180x12 - - -
platform

Hzd

S

traight-line portions
of lower chord

axis of symmetry

S (if service platform leaves out of account)

o
o
S — — —
S

Fig. 3.2. The design scheme of the portal frame
with specification of the variable geometrical parameters
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3.2. System of constraints. The system of constraints Egs.(1.2) —(1.3)
should cover strength and stability constraints formulated for all design
sections of all structural members of the considered steel structure subjected to
all design load combinations at the ultimate limit state. The following strength
constraints have been included in the system of constraints Egs. (1.2) —(1.3),

formulated for all design sections, Vi = 1,_NDS (N, is the total number of the

design sections in structural members), of all structural members, Vj=1,N,
(N, is the total number of the structural members), subjected to all ultimate

load case combination, Vk =1, NV%

Lc >
Amf (X/CS )Ry’j e
— N’ X/
where o, (X) - #(Xcs))
n,j

force Ny, ()? ) acting in i ™ design section of j ™ structural member subjected to

namely normal stresses verifications:

~1<0, 3.1)

is the value of the normal stresses caused by axial

k ™ ultimate load case combination calculated from the linear equations system
of the finite element method presented by Eq.(1.5); 4, ()? CS) is the net cross-

sectional area of ;™ structural member calculated depending on the variable

cross-sectional dimensions of the structural members X ; 7, is the safety
factor [12]; R

., 1s the design strength for steel member subjected to tension,

bending and compression; Ry, are allowable value for normal stresses [12];

O ik ()? ) are normal stresses at the specified cross-section point caused by

internal forces acting in i ™ design section of j ™ structural member subjected to

k ™ ultimate load case combination calculated from the linear equations system
of the finite element method presented by Eq. (1.5). The value of the normal

stresses o, ()? ) at the specified cross-section point has been calculated

depending on the variable geometrical parameters of the structure X, . and

variable cross-sectional dimensions of the structural members X .
The following constraints on slenderness of the structural members have
been included in the system of constraints Egs. (1.2) — (1.3), Vi =1, N, :

le«f,y,j (XIG )

- -1<0; (3.2)
iy,j (XCS ) iuy,j
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real¥e) g, (3.3)
iy (Xes A,

where iy’j()a(cs) and iw.()a(cs) are radiuses of inertia for ;" structural

member’s design cross-section relative to the main axis of inertia and
calculated depending on the variable cross-sectional dimensions of the
structural members X, ; lef’y’j()a(g) and lef’z’j()a(g) are design lengths for
j ™ structural member in the main planes of inertia calculated depending on

the variable geometrical parameters of the structure X, ; A, and 4, . are

the ultimate slenderness for ;™ structural member. Design lengths of the

structural members /,, ()? G) and [, ; ()? G) were defined according to [12]
as: for chords, support diagonals and support columns of the lattice structural
members lef’y’j()a(g)zlj()?s); lef’z’j()a(g) l,;; for other elements of the

lattice structural members [, ()?G) =0.85/; (XG) 5 Ly ()?G ) =0.85/ ;;

here /, is the geometrical length for j ™ bar of lattice structural member; L, is

the distance between out-of-plane restraints of the member from the horizontal
displacements in out-of-plane direction. Ultimate values for the slenderness of
the lattice structural members were specified according to [12] as:
A =, =400 for all tensioned members; A, . =4, =150 for all

w,j uz,j w,j
compressed members.
The following stability constraints have been included in the system of

constraints Egs. (1.2) — (1.3), formulated for all design sections, Vi =1,_NDS,
of the structural members subjected to all ultimate load case combination,

Vk =1,N'= , namely flexural buckling verifications for all structural members

subjected to axial compression force N, ( ) V]—l N, :

= aNﬁk ()?)4 -1<0; (3.4)
Py (XG’XCS )Ai (Xcs )Ry,j?/c
N lX) ~1<0; (3.5)

?.; (‘X/G’XICS )Aj ()?cs )Ry’j)/c.
where 4, ( CS) is the gross cross-sectional area of ;™ structural member
calculated depending on the variable cross-sectional dimensions of the structural
members X ; ?,; (X X, ) and ¢_; ()?G,)?CS) are column’s stability

factors corresponded to flexural buckling relative to the main axes of inertia and
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calculated depending on the design lengths IL,”( G), lq.’z’j()a(g), Cross-
section type and cross-section geometrical properties for the ;™ structural

member [12]. The flexural buckling factors ¢, ; (fg,ics) and ¢_; ()?G,)?CS)

calculated depending on the variable geometrical parameters of the structure X G

and variable cross-sectional dimensions of the structural members X .

The following local buckling constraints have been also included into the
system of constraints:

If’ (yfs) ~1<0; (3.6)
s (X)

L (st)—l <0, (3.7)
iuf J (X)

where A, ( CS) and /1 ( CS) are the non-dimensional slenderness of the
web and flange respectively of the cross-section for ;™ structural member;
/Tuw’j()? ) and /TM’]. ()? ) are the maximum values for corresponded non-

dimensional slenderness for column structural members calculated depending
on the internal forces (ration of the bending moment to the axial force), as well
as depending on the design lengths / qu.’z’j , cross-section type and cross-

section geometrical properties for the j™ structural member [12]. The non-

cfy/’

dimensional slenderness A, ( CS) and /1 ( CS) calculated depending on

the variable cross-sectional dimensions of the structural members X, only.
At the same time, the maximum values for corresponded non-dimensional

slenderness /TWJ()? ) and /TLM ()? ) calculated depending on the variable

geometrical parameters of the structure X . and variable cross-sectional

dimensions of the structural members X, .

The system of constraints Egs. (1.2) — (1.3) has been also covered the
displacements constraints (stiffness inequalities) for the specified nodes of the
considered steel structure subjected to all design load combinations at the
serviceability limit state. The following horizontal and vertical displacements
constraints have been included into the system of constraints Egs. (1.2) — (1.3),
formulated for all nodes, Vim=1,N, (N, is the total number of nodes in the

considered steel structure), of the steel structure subjected to all serviceability

load case combination, Vk =1, N} , namely:
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S (X
L() -1<0; (3.8)
51Lx,m
5. (¥
L() -1<0, (3.9)
51!2,”’[
where 6, ()? ) and 6_,, ()? ) are the horizontal and vertical displacements

respectively for/ ™ node of the steel structure subjected to & ™ serviceability

load case combination calculated from the linear equations system of the finite
element method presented by Eq. (1.6); 6,, and &, , are the allowable

horizontal and vertical displacements for m ™ structural node. Ultimate values
for linear node displacements of the steel lattice portal frame were calculated
according to [12] as 6,,,, = H_, /210 and 5, = L/300 =230 mm.

Additional requirements that describe structural, technological and
serviceability particularities of the considered structure, as well as constraints
on the building functional volume (see Fig. 3.3) can be also included into the
system Egs. (1.2) — (1.3). In particular these requirements can be presented in
the form of constraints on lower and upper values of the design variables,

Vi=LN,:

1-2£<0; (3.10)

X
120, (3.11)

l

where X/ and X' are the lower and upper bounds for the design variable

X, ; N, isthe total number of the design variables.

Additional constraints on cross-sectional sizes of the structural members
with circle hollow sections type have been formulated according to the
requirements of [12]. There were constraints of permissible minimal thickness
and permissible maximum diameter-to-thickness ratio for the structural

members, namely, V/=1,Ng, :

t
1,0-——<0; (3.12)

min,/

Dl
~1,0<0, 1
5 (3.13)

1~ max,/

where / is the number of the stiffness type; N, is the overall quantity of the
stiffness types in the considered steel lattice portal frame; ¢ and D, are

thickness and diameter of the circle hollow section for /™ stiffness type (see
Table 3.1) respectively; ¢ is the minimum thickness of the circle hollow

min,/
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section in accordance with design code [12] as ¢ _,=3mm for chords,

min,/
support diagonals and support columns of lattice structural members and
t . =2.5mm for other lattice elements; &, is the maximum diameter-to-

min,/ max,/
thickness ratio for the structural member with circle hollow section in
accordance with design code [12] depending on the yield stress value

R, =245MPa <295 MPa as &,,, =30 for chords elements of the lattice

BL max,/

=90 for other lattice elements.

structural members and &

max,/

300,3550,
33000

18300
17159

6500

5000

(railhead top)

wer _cable

52% ;1025
4800
2300|3200, 2700

Fig. 3.3. Technological equipments and constraints that describe useful space in the building

B

The following constraints that describe conditions for designing gusset-less
welded joints between CHS structural members formulated according to the
requirements [12] have been also included in the system Egs. (1.2) —(1.3),

q,p=1.Ng:
0,3d,<d, <d,, (3.14)
where p and ¢ are the numbers of the stiffness types of structural members

connected in the joint, here p is the number of the chord’s stiffness type; ¢ is

the number of the lattice stiffness type.
3.3. Objective function. Minimum weight as well as minimum
construction budget has been considered as purpose function. Analytical

expression for the structural weight M()? X CS) depending on the variable

cross-sectional sizes of the members can be written by the following formula:

N Ny
M(X,, X )= gop; Al = 4ﬂgop;tj (D, -t,)1, - min, (3.15)
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where A4, and /; are gross cross-sectional area and geometrical length for j .
structural member respectively; p — steel density, p =7850kg/m’; ¢ is the

factor that takes into account the increment of structural weight due to the
present of the adjunct elements in the structural members and joints (stiffeners,
ribs, end-plates, gussets etc.), ¢ was defined according to the steel specification

mentioned in the source project for the warehouse framework, ¢ [ 1,1.

Construction budget of the steel portal frame with lattice structural
members taken into account construction budget of mezzanines erected at the
level +28,25 can be presented as follow:

et sl wi
K - lezf + lezf + Casm + Cusm + CL‘.p. + Cq.c'. + Cmut >
where C, . is the manufacturing cost of lattice structural members; C, . is the

manufacturing cost of mezzanine’s structural members; C, is the assembly cost

for steel portal frame; C" is the assembly cost for walling; C. is the cost on

asm c.p.

the work package for corrosion protection of the steel framework; C, . is the cost

for the quality control of welded connections; C, . is the material cost for

mat
structural members of the steel portal frame. Analytical expression of the
construction budget for manufacturing and erection of the steel lattice portal frame
depending on the design variables have been presented by the following, UAH:

K =20670M (X, X )+1525D,, (X, )+1300H., +
- (3.16)
+110A, (X, X 5 )+21120 — min,
1

where D, is the half-rafter length, D, = ((0, 5L +(H,-H.,) )E ; L isthe

portal frame span, L =69 m; A ()? o X CS) is the total surface area of the steel

lattice portal frame to be subjected to anti-corrosion treatment.

4. A parametric optimization algorithm based on the gradient
projection method. Let present the following numerical algorithm to solve the
parametric optimization problem for steel structures formulated above.

Step 1. Describing an initial design (a set of design variables) and initial
data for structural optimization.

The design variable vector X, =(X,, X)! has been specified, where k

is the iteration index, k =0. The structural topology, cross-section types and
node type connections of the bars, the support conditions of the bar system, as
well as loading patterns, load case combinations and load design values are
prescribed and constants.

Initial data for optimization of the considered steel structure are design
strength for steel member R, safety factor y,, factors to define flexural

design lengths /, ., [, . for all column structural members; allowable
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values for horizontal and vertical displacements 6, , and J,., of the specified
nodes of the considered steel structure; lower X* and upper XV bounds for

the design variables; as well as specified objective function f(X )

Step 2. Calculation of the geometrical and design lengths for all structural
members.
The geometrical lengths /; of all structural members are calculated based on

the node coordinates of the considered steel structure. The latter depend on the
unknown (variable) geometrical parameters of the structure X - The design
lengths / /
calculated geometrical lengths /; and initial data relating to the design length

of all column structural members are calculated using

of.y.j> ez

factors. The latter are constant during the iteration process presented below.
Variation of the geometrical lengths /, and corresponded design lengths /

l

oy,

..., on the further iterations has been performed based on the current values of

the variable (unknown) parameters X . of the geometrical scheme.

Step 3. Calculation of the cross-section dimensions and geometrical
properties for all design cross-sections.

Geometrical properties of the design cross-sections (areas, moments of
inertia, elastic section moments, radiuses of inertia, etc.), as well as non-
dimensional slenderness for cross-section elements (webs and flanges)

Iw’j(i o) and ZN()? «s) have been calculated depending on the current

values of the unknown (variable) cross-section dimensions X .

Step 4. Linear structural analysis of the considered steel structure.

For each m™ node of the finite element model subjected to k™
serviceability load case combination the displacements and rotations, as well
as the design horizontal o, (X) and vertical 0. 4 (X) displacements can be
calculated using the linear equations system of the finite element method
presented by Eq. (1.6).

For each i™ design section of ;™ structural member subjected to k™
ultimate load case combination the design internal forces can be calculated using
the linear equations system of the finite element method presented by Eq. (1.5).

Step 5. Calculation of the state variables (stresses, buckling factors,
allowable non-dimensional slenderness etc.).

The value of the normal o,
point has been calculated depending on the axial force acting in i ™ design

section of ;™ structural member subjected to k™ ultimate load case

(X) stresses at the specified cross-section

combination as presented by the design code.
The flexural buckling factors (py’j(f( o Xes) s ¢Z’_f()?6,)?cs) have been
calculated depending on the corresponded design lengths, cross-section type
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and cross-section geometrical properties for the structural members according
to the design code [12].
The maximum values for corresponded non-dimensional slenderness

Z M’j()ﬁ( ) and Z i (X) for column structural members have been calculated

o .y.j? !

section geometrical properties for the j ™ structural member [12].

depending on the design lengths !/ cross-section type and cross-

ef.z,j°

Step 6. Verifications of the constraints and construction the set of active
constraints numbers A .

Verification of the constraints Egs. (3.1), (3.4), (3.5) has been performed for
all ultimate load case combinations and all design cross-sections of all structural
members. Verification of the constraints Egs. (3.8), (3.9) have been also
conducted for all serviceability load case combinations and all design structural
nodes. Additional requirements in the form of constraints Egs. (3.10), (3.11) on
lower and upper values of the design variables, local buckling constraints
Egs. (3.6), (3.7), constraints on the member’s slenderness Egs. (3.2), (3.3),
constraint Eq. (3.12) on permissible minimal thickness, constraint Eq. (3.13) on
permissible maximum diameter-to-thickness ratio for the structural members, as
well as the conditions Eq. (3.14) for designing gusset-less welded joints between
structural members with circle hollow sections have been also verified. Set of the
active constraints numbers A calculated for the current approximation X , has
been constructed according to Eq. (2.2).

Step 7. Calculation of the current objective function value (X ), objective
function gradient Vf(X ) and determination of the desired decrement of the
objective function value Af(X o) -

The objective function gradient V/ (X ) can be calculated by the numerical
differentiation with respect to the design variables using the finite difference
approximation. The desired decrement of the objective function value Af(X 0)

can be assigned as 5...25% from the current objective function value f(X )
Step 8. Construction of the constraint’s violations vector V and the matrix
of the active constraint’s gradients [Vgo]. The vector of the values of the

constraint’s violations V and the matrix of the constraint’s gradients [Vgo]
are constructed for active constraints only according to the set of active
constraints numbers A .

Step 9. Construction the matrix of active linear-independent constraint’s
gradients with triangular structure. The set of linear-independent constraint’s
numbers L and the matrix of active linear-independent constraint’s gradients
H[Vgo] with triangular structure are constructed according to the algorithm

presented by the paper [14].
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Step 10. Step parameter £ calculation. Step parameter £ has been calculated

according to Eq. (2.11) or Eq.(2.12) and can be modified on the further
iterations depending on convergence of the iterative process presented by
Eq. (2.1).

Step 11. Calculation the column-vectors z, and fi; which define the design

variables increment subject to the condition of elimination the constraint’s
violations and subject to the improvement of the objective function value. The
vectors f, and jii can be calculated using Eq.(2.18) and Eq.(2.19)

respectively.
If some 4™ component of the column-vectors i, and ji satisfies

Eq. (2.17), the corresponded constraint gradient V¢, has been excluded from
the matrix [V¢], and corresponded violations ¥, has been excluded from the

vector V , as well as the return to step 9 has to be conducted. In contrary case
transition to the step 11 has been performed.

Step 12. Calculation the increment vector for the current design variables
and determination the improved approximation to the optimum solution. The

increment vector AX, for the current design variables values X, has been
calculated according to Eq. (2.20) or Eq. (2.21). The improved approximation

X k+1

Step 13. Stop criteria verification of iterative searching for the optimum
solution. If all constraints Egs. (3.1)—(3.14) are satisfied with appropriate
accuracy, as well as inequality Eq. (2.22) or one of the stop criteria described by
the paper [14] is also satisfied, then transition to the step 13 has been performed.

In contrary case return to the step 1 has been conducted with & < k +1.

to the optimum solution has been determined according to Eq. (2.1).

Step 14. Discretization the optimum solution X , obtained in the
continuum space of the design variables.
Step 15. Optimum parameters of the structure is X . with optimum value of

the objective function (X )

Figure 4.1 presents the flow chart for structural optimization according to the
searching technique describing by the gradient projection method considered
above.
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Step 1. Describing an initial design (a set of design variables) and initial data for structural
optimization. & is the iteration index, £ =0.

(D)—

Step 2. Calculation of the geometrical and design lengths for all structural members.

!

Step 3. Calculation of the cross-section dimensions and geometrical properties for all
design cross-sections.

!

Step 4. Linear structural analysis

|

Step 5. Calculation of the state variables (internal forces, stresses, etc.)

|

Step 6. Verifications of the constraints and
construction the set of active constraints numbers A

|

Step 7. Calculation the current objective function value f()?k) ,

objective function gradient Vf(f(,() and desired decrement Af(X,)

!

Step 8. Construction of the constraint’s violations vector V
and the matrix of the active constraint’s gradients [V o]

O—

Step 9. Construction the matrix of active linear-independent constraint’s gradients
H|[Vg] with triangular structure and vector HVf

Fig. 4.1. The flow chart for structural optimization according to the searching technique
based on the gradient projection method.
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Step 10. Step parameter ¢ calculation

{

Step 11. Calculation the column-vectors z, and z, determining the design variables

increment subject to the condition of elimination the constraint’s violations and subject to the
improvement of the objective function value

Excluding the constraint gradient
Vg, from the matrix [V¢] and

violation 7, from the vector V

Verification the inequality
Eq. (2.12) for all columns
of the matrix [Vo]|

Step 12. Calculation the increment vector AX, for the current
design variables and determination the improved
approximation to the optimum solution X’,H

Iteration index
k<« k+1

Step 13. Stop
criteria verification

Step 14. Discretization the optimum solution X’k

v

Step 15. Optimum parameters of the structure is X’k with optimum

value of the objective function f()?k)

Fig. 4.1 (continuation). The flow chart for structural optimization according to the searching
technique based on the gradient projection method

5. Results and discussion. A parametric optimization methodology
presented above has been realized in software OptCAD [19, 20]. The software
provides solutions to a wide range of problems, namely: (i) linear static
analysis of bar structures; (ii) verification of the load-bearing capacity of the
structural members according to specified design code; (iii) searching for
values of the structural parameters when structure complies with design code
requirements and designer’s criterions; (iv) parametric optimization of the steel
bar structures by the determined criterion.
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Fig. 5.1. The optimum design decision by the criterion of minimum structural weight when lower
chord of the lattice rafter is straight-line.

Table 5.1

Optimal values for variable geometrical parameters of the portal frame’s
design scheme

Optimum values, m, by the criterion of minimum
. costs on fabrication and
. . Start weight .
Design variable value. m erection
’ when lower chord of lattice rafter is
straight-line | polygonal | straight-line | polygonal
H,, 39.58 38.82 39.55 38.74 39.44
H, 10.63 11.92 11.84 12.08 12.03
h, 2.60 - 3.23 - 3.31
h, 2.60 - 3.21 - 3.23
hy 2.60 - 2.68 - 2.70
hy 2.60 2.18 2.68 2.13 2.61
b, 0.55773 1.00 0.56 1.05 0.63
h,, 2.60 3.61 3.72 3.73 3.87
b,, 2.60 3.08 3.02 3.02 2.95
Weight, x10° kg| 30.78 18.98 18.45
Costs, UAH | 786681 534647 524257
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Table 5.2

Optimal values for variable cross-sectional sizes of the lattice structural

members of the portal frame

Optimum values, mmxmm, by the criterion of minimum
. costs on fabrication and
weight .
Start erection
Design value when lower chord of the lattice rafter is
variable m ’| straight- olveonal straight- olveonal
line polye line polye
in the search space
continuous discrete continuous discrete
dl X1, 299x25| 183.4x8.4 | 192.3x8.6 | 194x9.0 | 173.9x9.3 | 172.9x8.6 | 168%x11.0
dl xt, 299x14| 183.4x6.1 | 192.3%6.4 | 194x7.0 | 173.9%x6.9 | 172.9%6.3 | 168x8.0
dl Xt 299x10| 183.4x6.9 | 192.3x6.5 | 194%6.5 | 173.9x7.3 | 172.9x7.4 | 168x8.5
dl xt, 299x14| 183.4x8.5 | 192.3x9.3 | 194x9.0 [173.9x10.7| 172.9x9.3 |168%11.0
dl 1, 299x14| 183.4x6.1 | 192.3%6.4 | 194%6.5 | 173.9x5.8 | 172.9x5.8 | 168%6.0
d6 X1, 299x10( 297.4%9.9 |303.1x10.1{299%10.0 | 298.1x9.9 | 292.3x9.7 {299%10.0
d6 xt, 299x16(297.4x11.3|303.1x11.4{299%12.0 {298.1x11.6 {292.3%11.5{299%12.0
dg A 299x10| 264.4x8.8 | 269.4%x9.0 {299%10.0 | 269.0x9.0 | 263.6x8.8 | 273x9.5
d9 xt, 299x10( 203.0%6.8 | 210.7x7.0 | 194x8.5 | 211.5x7.0 | 202.8%x6.8 | 219%x7.5
dlo X1, 299x14| 143.5%x4.8 | 147.1x4.9 | 152x5.5 | 148.1x4.9 | 143.3x4.8 | 146%5.5
dn X1, 180x12( 183.4x9.7 | 192.3x9.6 | 194x9.5 [173.9x11.5({172.9%11.1|168%13.0
dlz xt, 152x8 | 161.2x4.5 | 165.6%4.6 | 152x5.5 | 164.9%4.6 | 160.8%4.5 | 168x5.0
dw xt,, 121x8 | 110.3x3.9 | 107.4x3.6 | 108x4.0 | 80.7x4.9 | 79.1x5.6 | 83x5.0
d14 xt, 102x5| 89.2x3.5 | 90.9x3.5 | 95x3.5 | 89.4x3.5 | 87.7x3.5 | 95x3.5
dls X1, 152x8 | 143.5x5.2 | 147.1x5.1 | 152x5.0 | 133.5%5.9 | 135.1x5.6 | 133%6.0
dm X1 102x5| 55.0x3.5 | 57.9x3.5 | 60x3.5 | 52.2x3.5 | 51.9x3.5 | 54x3.5
d17 xt,, 180x12( 112.8x4.9 | 116.3x4.7 | 108x5.0 | 90.4x6.1 | 101.8x5.4| 95x6.0
d18 X1 180x12| 143.5%6.3 | 147.1x6.6 | 152%6.5 | 148.1x6.6 | 143.3x6.4 | 146x7.5
d19 X1, 299x10( 297.4%9.9 303.2x10.1{299%10.0 | 298.1x9.9 | 292.3x9.7 {299%10.0
d19 Xty 299x25( 297.4%9.9 |303.2x10.1{299%10.0 | 298.1x9.9 | 292.3x9.7 {299%10.0
d21 xt,, 299x25(297.4x21.0(303.2x21.1{299%22.0 {298.1x22.3 {292.3%22.3|299%24.0
d22 Xt 102x5| 89.2x3.5 | 90.9x3.5 | 95x3.5 | 89.4x3.5 | 87.7x3.5 | 95x3.5
dzz X1y, 180x12| 148.9x5.3 | 151.6x5.3 | 152x5.5 | 79.7x11.4 | 81.8x10.6 | 83x1.2
Weight, ><103,kg 30.78 18.45 18.98 19.70 - - -
Costs, UAH |786681 - - - 534647 524257 | 552368
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Formulated parametric optimization problem for the steel lattice portal
frame has been solved using software OptCAD. Mathematical apparatus of the
software combines the finite element method to perform linear static analysis
of the bar system, as well as improved gradient projection method to solve
parametric optimization problems formulated as non-linear programming tasks
[19, 20]. Task dimensions are: account of design variables is 50, account of
problem constraints is 14000.

Optimization results received using software OptCAD are presented by the
Tables 5.1 and 5.2. Figure 5.1 show optimal design decision by the criterion of
minimum structural weight of the steel lattice portal frame (project with start
values of the design variables is indicated by the red color, optimum project is
indicated by the blue color).

Conclusion. The results of the presented study can be formulated as
follow:

1. The paper has proposed a mathematical model for parametric
optimization problem of the steel lattice portal frame with CHS structural
members. The design variable vector includes geometrical parameters of the
structure (node coordinates), as well as cross-sectional dimensions of the
structural members. The system of constraints covers load-carrying capacities
constraints formulated for all design sections of structural members of the steel
structure subjected to all ultimate load case combinations. The displacements
constraints formulated for the specified nodes of the steel structure subjected to
all serviceability load case combinations have been also included into the
system of constraints. Additional requirements in the form of constraints on
lower and upper values of the design variables, constraints on permissible
minimal thicknesses, constraints on permissible maximum diameter-to-
thickness ratio for the structural members with circle hollow sections, as well
as the conditions for designing gusset-less welded joints between structural
members with circle hollow sections have been also considered in the scope of
the mathematical model.

2. The method of the objective function gradient projection onto the active
constraints surface with simultaneous correction of the constraints violations
has been applied to solve the formulated parametric optimization problem.

3. A numerical algorithm for solving the parametric optimization problems
of steel lattice portal frames with CHS structural members has been presented
in the paper.

4. New optimal layouts of the steel lattice portal frame by the criterion of
the minimum weight, as well as minimum costs on manufacturing and erection
have been shown.
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V]IK 624.04, 519.853
FOpuenko B.B., [lenewxo 1./].
MAPAMETPUYHA ONITUMIZALISA CTAJEBOI PEINITYACTOI PAMHM 3
HECYYUMMU EJIEMEHTAMM I3 KPYI'VIUX TPYB

VY craTri 3amponoOHOBaHA MaTeMaTHYHAa MOJENb Ui 3ajadi IapaMeTpHyHOi ONTHMIi3awil
CTaJIeBOi PEIIITYACTOI MONMEpedHoi paMH Kapkacy OyxiBii, Hecydi €eMEHTH SKOI BHKOHaHI 3
Kpyriux Tpy6. BekTop 3MIHHHX NMPOEKTYBaHHS MICTHTh I'€OMETPHYHI IapaMeTpH KOHCTPYKLIl
(KOOpIMHATH BY3JiB), a TAKOXK PO3MIpPH ITONEPEUHNX IEePepi3iB HECYYHX SIEMEHTIB KOHCTPYKIIIi.
Cucrema OOMEXEHb OXOIUIIOE OOMEXKEHHs Hecydol 3maTHOCTI, copMynbOBaHI AT ycixX
PO3paxyHKOBHUX TEPepi3iB eIEMEHTIB KOHCTPYKIIi, IO Mijsirae Il ycix KoMOiHal[ili HABaHTaKEHb
Hepuioi Tpynu TPaHUYHKMX CraHiB. J[0 cHCTeMH OOMEXEeHb TaKOK 3alydeHi OOMEKEHHs
HepeMillieHb By3J1iB, chOPMYJIbOBaHI Ul BU3HAYCHUX BY3JIiB KOHCTPYKIII, IO migjsrae il ycix
KOMOiHaLiii HaBaHTa)XEHb APYroi I'PyNU IPaHUYHUX cTaHiB. JlomaTkoBi oOMexeHHs y dopwmi
OOMEKEeHb Ha BEPXHIO Ta HIDKHIO MEXI BapilOBaHHS 3MIHHUX IPOCKTYBaHHs, OOMEKEHHS Ha
JOMyCTUMY MiHIMAJIbHY TOBLUMHY Iepepidy, OOMEKEHHs Ha JOINYCTHME MaKCHMalbHE
BIIHOLIGHHS AiaMeTpy 10 TOBIIMHH TPyOH, a TAKOX YMOBH KOHCTPYIOBaHHS 0e3(haCcOHKOBHX
BY3JIIB PEIIITYACTOI KOHCTPYKLIT 3 eJIeMEHTaMH i3 KPYIIuX TpyO Takoxk Oyiu po3risHYTI y cKiaai
cHCTeMH OOMeKeHb MaremMatHyHol Mopenm. Jlmsi po3B’s3ky  cdopmyiaboBaHoi  3amadi
HapaMeTpUYHOl ONTHMi3alil BHKOPHCTOBYBABCS METOH MpOEKUii rpagieHTy (yHKUii MeTH Ha
IIOBEPXHIO aKTHBHHX OOMEXEHb 3a OJZHOYACHOI JIKBifaLii HEB’SI30K y HOPYIICHHX OOMEKCHHSIX.
SIk pe3ysibTaT OTPUMaHi HOBI ONTHMANbHI IPOEKTHI PIICHHS CTAJIEBOI PELIITIACTOI HOMEPEIHOL
pamu 3a KpUTepieM MiHIMyMy MacH KOHCTPYKLIi, @ TAKOXK 332 KPUTEPieM MIHIMyMY KOIITOPHCHOL
BapTOCTI i BATOTOBJICHHS Ta 3BEACHHSL.

KirouoBi cioBa: onTuMizamis, craneBa peliTdacta pama, HENiHiffHE NporpaMmyBaHHS,
MILHICTB, CTIMKiCTh, KOPCTKICTh, IPAJIEHTHUI METOM, METOJ CKiHYEHHHX €JIEMEHTIB, YHCIOBHIA
AITOPUTM.

UDC 624.04, 519.853
Yurchenko V.V., Peleshko I.D.
PARAMETRIC OPTIMIZATION OF STEEL LATTICE PORTAL FRAME WITH CHS
STRUCTURAL MEMBERS

The paper has proposed a mathematical model for parametric optimization problem of the
steel lattice portal frame. The design variable vector includes geometrical parameters of the
structure (node coordinates), as well as cross-sectional dimensions of the structural members. The
system of constraints covers load-carrying capacities constraints formulated for all design sections
of structural members of the steel structure subjected to all ultimate load case combinations. The
displacements constraints formulated for the specified nodes of the steel structure subjected to all
serviceability load case combinations have been also included into the system of constraints.
Additional requirements in the form of constraints on lower and upper values of the design
variables, constraints on permissible minimal thicknesses, constraints on permissible maximum
diameter-to-thickness ratio for the structural members with circle hollow sections, as well as the
conditions for designing gusset-less welded joints between structural members with circle hollow
sections have been also considered in the scope of the mathematical model. The method of the
objective function gradient projection onto the active constraints surface with simultaneous
correction of the constraints violations has been used to solve the formulated parametric
optimization problem. New optimal layouts of the steel lattice portal frame by the criterion of the
minimum weight, as well as minimum costs on manufacturing and erection have been presented.

Keywords: optimization, steel lattice frame, nonlinear programming, strength, buckling,
stiffness, gradient projection method, finite element method, numerical algorithm.

YK 624.04, 519.853
FOpuenko B.B., [lenewixo U.J].
MAPAMETPUYECKASI ONTUMM3ALIUAS CTAJIBHOM PEILIETYATOM PAMBI C
HECYIIUMHU DJIEMEHTAMMU U3 KPYTJIbIX TPYB

B cratbe npemiokeHa MaTeMaTH4YecKasi MOJEIb Ul 3a/1a4d apaMeTPUYECKON ONTUMU3ALUU
CTAJIbHOM pelIeT4aTo IONEpEeYHOH paMbl Kapkaca 3[aHHs, HECylHe O3JIEeMEHTHl KOTOpOH
BBITIOJIHEHBI M3 KPYTJIbIX TPYO. BeKTOp nepeMeHHbIX MPOEKTUPOBAHUS COIEPIKUT I'€OMETPUUECKHE
HapaMeTpbl KOHCTPYKLMHU (KOOPAMHATBI Y3JI0B), @ TAKXKE pa3MepPbI MONEPEUHbIX CEUEHNUH HECyLInX
AIEMEHTOB  KOHCTpYKIMHM. CucremMa OrpaHMYEHMH BKIIOYAaeT OrpaHUYEHHUs  Hecyllel
CrOCOOHOCTH, C(OPMYINPOBAHHBIC IS BCEX PACUCTHBIX CEYCHHI DIEMEHTOB KOHCTDPYKIIHH,
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HOUIeKAILEH NeHCTBUIO BceX KOMOMHALMK HAarpy30K MEpBOI IPYIIIbl IPEAEIbHBIX COCTOsHUIL. B
CHCTEMY  OrDaHMYEHMH  TaKKe  BKIIOYEHbl ~ OrPAaHUYEHUS  IEPEMEIEHUil  y3JIOB,
copMyIMpOBaHHbIC AJS ONMPENCICHHBIX Y3JI0B KOHCTPYKLHMH, HOUIeKAIUeH ACHCTBUIO BCeX
KOMOMHAIIMH HAarpy30K BTOPOIl IPYIIIbI PEAeIbHBIX COCTOSHHUMN. [lOMOIHUTEIbHbIC OrPaHHYCHUS
B (opMe OrpaHHYCHHH Ha BEPXHIOID W HIKHIOI TPAHUIBI BapbUPOBAHMS IIEPEMEHHBIX
HPOEKTUPOBAHMSI, OTPAHUUYEHUS Ha JOMYCTUMYI MUHUMAJIbHYIO TOJILUHY CEYEHHUs, OrPAaHUUYCHUS
Ha JONYCTUMOE MAaKCHMAaJbHOE OTHOIIEHHME [MaMeTpa K TOJILMHE TPYObl, a TaKKe YCIOBHS
KOHCTPYHPOBaHHS 0ec(haCOHOUHBIX Y3JIOB PEIICTYATON KOHCTPYKIHHU C DJIEMEHTaAMH MX KPYIJIbIX
Tpy0 Taxxke OBUIH PACCMOTPEHBI B COCTABE CHCTEMbl OIPaHMYCHHI MaTeMaTHYecKoi Monenu. [t
pewieHust chOpMyIHPOBAHHOH 3aJady MapaMeTPUUECKON ONTUMHU3ALMK HCIIOIB30BAICS METOX
IPOCKLMK TIpajueHTa (GYHKIMHM LETd Ha I[IOBEPXHOCTh AKTHBHBIX OrPAaHWYCHUH IpH
OJJHOBPEMEHHOW JIMKBUJALIMU HEBA30K B HAPYIUEHHBIX OrpaHUYEHMAX. B pesynbrare momydeHst
HOBBIE ONTHMAaJIbHbIE HPOEKTHbIE PELICHUs CTAJbHOM pELIeTYAaTOH IONEePeyHod pambl 110
KPUTEPUI0 MUHMMYMa MacChl KOHCTPYKLHMM, a TaKKe I10 KPUTEPUI0 MUHMMYMa CMETHOMH
CTOMMOCTH Ha €€ U3rOTOBJIEHUE H BO3BEIECHHUE.

KaroueBble  cioBa:  onTHMH3aLuMs, CTajbHas  pelieTyaras — pama,  HEJIMHEHHoe
HPOrpaMMUPOBAHUE, HPOYHOCTb, YCTOHUMBOCTb, JKECTKOCTb, TI'PAJUEHTHBIA METOHA, METOA
KOHEYHBIX 3JIEMEHTOB, YUCIEHHbIH aJI'OPUTM.

YK 624.04, 519.853

FOpuenko B.B., Ilenewrxo I./]. TlapameTpuuHa onTuMi3amiss cTajieBoi pemiTyacToi pamMu 3
HECYYHMH eJIeMeHTaMH i3 Kpyrimx Tpyo6 / Omip maTepiaiiB i Teopis cropya: HayK.-TeX. 30ipH.
—K.: KHYBA, 2021. — Bun. 107. — C. 45-74.

Y emammi 3anpononosana mamemamuuna modenv 0as 3adaui napamempuuHoi onmumizayii
cmanesoi pewtimuacmoi nonepeunoi pamu kapracy 0yoieni, necyui eiemenmu SIKOi 6UKOHAHI 3
Kpyenux mpy6. Ax 6ekmop 3MIHHUX NPOEKMYSAHHS PO3STAHYMO KOOPOUHAMU Y378 KOHCIMPYKYT,
a maxodic po3mipu nonepeyHux nepepizis it necyyux enemenmis. Cucmema oomedcenb 0XoNa08aNd
0OMEINHCEHHSI HECYUOT 30aMHOCI CIEPICHEBUX elleMemie KOHCMPYKYIL, 00MedceHHs nepemiujeHs it
6Y371i6, 0OMedICeHHs HA OONYCMUMY MIHIMATLHY MOGUWUHY Nepepi3y, 00MedCeH s Ha OONnYCmume
Makcumanbhe 8iOHOWleHHs diamempy 00 MOGWUHU MPYOU, A MAKOXHC HEPIGHOCMI, WO ONUCYIOMb
YMOBU KOHCMPYIOBAHHS 0e3(haACOHKOBUX QY376 peuimuacmoi KOHCMpPYKYil 3 eremenmamu i3
Kpyeaux mpy6. s po3s’s3ky copmyibosanoi 3a0aui SUKOPUCMOBYEABCS MemoO NpOeKyii
2padicHmy (YyHKYIi Memu Ha NOBEPXHIO AKMUBHUX 0OMENCEeHb 3 0OHOUACHOT TIKEIOayii He6 30K y
nopyuieHux oomedcennsx. Ak pezyibmam OMPUMAHi HOBL ORMUMAIbHI NPOCKMHI PIUEHHS
cmanesoi pewlimyacmoi nonepeunoi pamu 3a Kpumepiem MiHIMymy Macu KOHCMPYKYIi, a makoic
3a Kpumepiem MiHIMyMy KOWMOPUCHOI 6apmocmi it 6Uo0mosneHns ma 36e0 eHHsi.

In. 5. Ta6a. 3. bi6mior. 20 Ha3s.

VK 624.04,519.853

Yurchenko V. V., Peleshko I. D. Parametric optimization of steel lattice portal frame with chs
structural members // Strength of Materials and Theory of Structures: Scientific-and-technical
collected articles — Kyiv: KNUBA, 2021. — Issue 107. — P. 45-74.

The paper has proposed a mathematical model for parametric optimization problem of the steel
lattice portal frame. The design variable vector has included node coordinates of the structure, as
well as cross-sectional dimensions of the structural members. The system of constraints has
covered load-carrying capacities constraints for structural members, the displacements
constraints for specified structural nodes, constraints on permissible minimal thicknesses,
constraints on permissible maximum diameter-to-thickness ratio for the structural members with
circle hollow sections, as well as the conditions for designing gusset-less welded joints between
structural members with circle hollow sections. The method of the objective function gradient
projection onto the active constraints surface with simultaneous correction of the constraints
violations has been used to solve the formulated problem. New optimal layouts of the steel lattice
portal frame by the criterion of the minimum weight, as well as minimum costs on manufacturing
and erection have been presented.

Figs. 5. Tabs. 3. Refs. 20.
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FOpuenko B. B., Ilerewko Y. /| Tlapamerpuyeckasi ONTHMH3AIMs CTAJIBHOI pemeTyaToi
PaMbl ¢ HeCyIUIMMHU 3J1eMEHTaMHU U3 KPYrJbIX Tpy® // ConpoTHuBiIEHHE MaTEPUAJIOB U TEOPUS
COOpysKeHuit: Hayd.- TeX. coopH. — K.: KHYCA, 2021. — Bpi. 107. — C. 45-74.

B cmamve npednodcena mamemamuyeckas Mooenb 015 3a0aiu Napamempuieckol onmumMuzayuu
CManbHOU pewlemuamoli NonepeyHoll pamvl Kapkaca 30anus, Hecywue 3S1eMeHmbvl KOmopou
6LINONHEHbL U3 Kpyeablx mpyb. B kauecmee 6ekmopa nepeMennHviX  npOoeKmupo8anus
paccmampusanucy KOOpOUHAmbl Y3108 KOHCMPYKYUU, d MAKHce pasmepsbl NONepeyHslx cedeHull ee
Hecywux snemenmos. Cucmema 02panuyenull 0OX6amuléana 02paHuieHus Hecywel cnocooHocmu
9NIeMEHMO8  KOHCMPYKYUU, O2PAHUYEHUs NepeMeujenull GblOPaHHbIX Y3108 KOHCIMPYKYUU,
ocpanudenus Ha OONYCMUMYIO MUHUMATLHYIO MOJWUHY CeYeHUs, 02PAHUYeHUss Ha OONYCMUMOe
MAKCUMAnbHOe OMHOWeHUe ouamempa K moawune mpyobl, a makice ycioeus KOHCMpYUupoBaHus
bechaconounbix Y3108 peutemuamoi KOHCMPYKYUu ¢ DAEMEHmAaMu ux Kpyenvlx mpyo. s
pewenus ChopMyaupoS8anHoU 3a0a4u UCNOIb308AICA MEMOO NPOEKYUU 2paouenma QyHkyuy yeau
Ha NOBEPXHOCMb AKMUBHBIX O2PAHUYEHUU Npu O0OHOBPEMEHHOU JUKBUOAYUU HeBA30K 6
HapyWeHHbIX 02panuyenusx. B pesynomame nonyuensl Hogble ONMUMATbHbIE NPOEKMHbIE PEUUEHUs
CManbHOU peuemuamoli nonepeyHot pamvl N0 Kpumepuio MUHUMYMA MAcCCbl KOHCMPYKYuU, a
Makoice no Kpumepuro MUHUMYMAa CMemHOU COUMOCIU HA ee U320MOBIeHUe U 8038e0eHle.

Wn. 5. Taba. 3. bubauor. 20 Ha3B.

ABTOP: 00KMOP MEXHIYHUX HAYK, Npohecop Kagheopu Memanesux ma 0epes ssHux KOHCMpYKYitl
FOpuenko Bimanina Bimaniiena

Anpeca podoua: 03680 Vrpaina, m. Kuis, [Tosimpogromcokuii np. 31, Kuiscokuil HayionanibHuil
yHisepcumem 6y0ieHUYMea i apXimekmypu

Pobounii Ten.: +38(044)249-71-91

Moboinbumii Ten.: +38(063)89-26-491

E-mail: vitalina@scadsoft.com

SCOPUS ID: 25637856200

ORCID ID: https://orcid.org/0000-0003-4513-809X

ABTOP: KAHOUOQM MEXHIYHUX HAYK, doyenm Kagedpu 0y0iseibH020 8UPOOHUYMEA

Ienewrxo lsan Imumposuy

Anpeca po6oua: 79013 Vipaina, m. Jlveis, eyn. Cm. bandepu 12, Hayionanvnui ynisepcumem
«JIvgiecoka nonimexmika»

Pobounii Ten.: +38 (032) 258-25-41

Moboinbumii Ten.: +38(098)41-57-517

E-mail: ipeleshko@polynet.lviv.ua

SCOPUS ID: 25637832500

ORCID ID: https://orcid.org/0000-0001-7028-9653




