82 ISSN 2410-2547
Omip MatepianiB i Teopis copyx/Strength of Materials and Theory of Structures. 2019. Ne 103

UDC 624.014

SEARCHING FOR SHEAR FORCES FLOWS IN ARBITRARY CROSS-
SECTIONS OF THIN-WALLED BARS: NUMERICAL ALGORITHM
AND SOFTWARE IMPLEMENTATION

V.V. Yurchenko,
Cand. Of Tech. Sc., Assoc. Prof.

Kyiv National University of Civil Engineering and Architecture
Povitroflotskyj av., 31, Kyiv, 03680

The problem of shear stresses outside longitudinal edges of an arbitrary cross-section (including
open-closed multi-contour cross-sections) of a thin-walled bar subjected to the general load case has
been considered in the paper. The formulated problem has been reduced to the searching problem
for unknown shear forces flows that have the least value of the Castigliano’s functional. Besides,
constraints-equalities of shear forces flows equilibrium formulated for cross-section branch points,
as well as equilibrium equation formulated for the whole cross-section relating to longitudinal axes
of the thin-walled bar have been taken into account.

A detailed numerical algorithm intended to solve the formulated problem has been proposed by
the paper. Developed algorithm has been implemented in SCAD Office environment by the program
TONUS. Numerical examples for calculation of thin-walled bars with open and open-closed multi-
contour cross-sections have been considered in order to validate developed algorithm and verify
calculation accuracy for sectorial cross-section geometrical properties and shear stresses caused by
warping torque and shear forces.
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Introduction. To provide desired stiffness and strength in torsion bridge
superstructures are often constructed with a cross-section consisting of multiple
cells which have thin walls relative to their overall dimensions. When the cross-
section contains multiple cells they all contribute resistance to applied torsion
and for elastic continuity each cell must twist the same amount. With these
considerations, equilibrium and compatibility conditions allow simultaneous
equations to be formed and solved to determine the shear flow for each cell [1].

R.K. Dowell and T.P. Johnson proposed a relaxation method that distributes
incremental shear flows back and forth between cells, reducing errors with each
distribution cycle, until the final shear flows for all cells approximate the correct
values [1]. In this paper, a closed-form approach has been introduced to
determine, exactly, both the torsional constant and all shear flows for multi-cell
cross-sections under torsion.

The problem of shear stresses determination for thin-walled bars has been
also studied by V. Slivker in [2, 3] for the general loading case. His semi-
sheared theory has been applied by Lalin V.V. et al. [4] for the stability
problems of thin-walled bars.

Further investigations in this area require the development of a detailed
algorithm intended to software implementation in a computer-aided design
system for thin-walled bar structures [5]. Such algorithm can be validated
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against benchmark examples as well as finite element results [6]. It is reasonable
to construct this algorithm using the mathematical apparatus of the graph theory
as it is convenient mathematical apparatus to describe the topological properties
of multi-cellular cross-section.

The graph algorithm used in this paper is given first by Tarjan [7]. Its
application in analysis of thin-walled multi-cellular section is described by
Alfano et al. [8], but the distribution of torsion stresses due to a change in
normal stresses has not been considered. The graph theory has been also applied
in [9, 10] to calculate the geometrical cross-sectional properties of thin-walled
bars with hybrid (open-closed) types of cross-sections.

Simple digital computer program has been created to evaluate the bending
shear flow of any multiply-connected cellular sections has been developed by
Chai H. Yoo et al. [11]. Proki¢ has developed a computer program for the
determination of the torsional and flexural properties of thin-walled beams with
arbitrary open-closed cross-section [12]. In his paper graph theory has been also
applied to establish the topological properties of multi-cellular cross-section.
Gurujee C.S. and Shah K.R. [13] presented a general purpose computer program
capable of analyzing any planar frame made up of bar members which can be
categorized as thin-walled structural members. G.K.Choudhary and K.M. Doshi
proposed an algorithm for shear stress evaluation in ship hull girders [14].

Though many papers are written on behavior of thin-walled bars development
of a general computer program for the design and verification of thin-walled bar
structural members remains an actual task. Despite the prevailing influence of
normal stresses on the stress-strain state of thin-walled bars design and verification
of thin-walled structural members should be performed taking into account not
only normal stresses, but also shear stresses. Therefore, in the paper a thin-walled
bar of an arbitrary cross-section which is undergone to the general load case is
considered as investigated object. The main research question is development of
mathematical support and knoware for numerical solution for shear stresses
problem with orientation on software implementation in a computer-aided design
system for thin-walled bar structures.

1. Problem formulation. Let us consider the problem of shear stresses on
longitudinal edges of an arbitrary section of a thin-walled bar that can consist of
several closed (connected and/or disconnected) contours and/or also open parts.
Let us introduce on the plane of thin-walled cross-section a Cartesian coordinate
system ».Oz. with the origin in the center of mass C of the section, the

direction of the coordinate system axes y.Oz. coincides with the direction of
principle axes of inertia. Let us also introduce on the plane of thin-walled cross-
section a Cartesian coordinate system y Oz, with the origin in the shear center
S of the section, the direction of the coordinate system axes y,Oz, coincides

with the direction of principle axes of inertia (Fig. 1).

Let us introduce in further consideration the system of angular position
coordinate with the origin in certain (generally randomly selected) sectional
point. Each considered sectional point can be associated with the angular
position ¢. The value ¢ should be calculated as the geometrical length of the
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curve constructed from the origin to the considered sectional point taken along
the sectional contour. We also assume that the increment of the angular position
¢ corresponds to the positive direction of section path tracing.

We assume that the
integral geometrical
properties of the section are
known: A4 is the cross-
sectional area, /, and I,

are the second moments of
area relative to the main
axes of inertia which
coincide with axes of
global Cartesian coordinate
system y.Oz.; I, is the

o]

Fig. 1. Cross-section of a thin-walled bar with representation sectorial moment of inertia;
of different angular positions as examples [t is the second moment of

area for pure torsion. We
also assume that the Young’s modulus £ and the shear modulus G are constants
for the whole cross-section of the thin-walled bar.

Generally, a thin-walled bar is subjected to the action of eight force factors.
Axial force N, bending moments M, and M, relative to the principle axes of
inertia and warping bimoment B are applied at the center of mass C (see
Fig. 1) of the section and cause normal stresses in the cross-section G;(x,G):

zi(9)+ yi(Q)+

Gi(x,g)=M+My_()c) M. (x) B(x)
y z 0}

A 1 1
where y,(c), z;(G), ®;(c) are coordinates and sectorial coordinate of the

o;(9), (1.1)

considered point in cross-section of a thin-walled bar.
Shear forces O, and Q,, total torque M, and warping torque M, are

applied at the shear center S (see Fig. 1) of the cross-section and cause shear
stresses in the cross-section, which can be written in terms of shear forces flows
T;(x,q) as presented below:

T; (x,6)
3,(9)

where & ;(6) is the thickness of considered ; ™ section element.

T,(x,0) = , (1.2)

An arbitrary section of a thin-walled bar can be described by the set of
sectional points P ={13p ={,.z,}lp= l,np} (v, and z, are the coordinates

of p"™ sectional point in the global Cartesian coordinate system -0z ) and by

the set of sectional segments S={§S ={ Y, pf"d}|s=m}, which connect
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some two adjacent sectional points (see Fig.2), where n, and ng are the

numbers of the sectional points and segments accordingly.
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Fig. 2. Arbitrary cross-section of a thin-walled bar determined
on the set of sectional points P and set of sectional segments S

Specified segment thickness 8={SS|S=R} corresponds to each sectional
segment. The set of sectorial coordinates wz{wp| p=1,np} and the set of

normalized sectorial coordinates tﬁz{(ﬁ plp=Ln p} of the section correspond to the

set of the sectional points P, assuming that the values of the sectorial coordinates
and normalized sectorial coordinates in each cross-sectional point are known [17,

18].

The set of angular positions g= {QK —{gi“m,gﬁ”d} |k =1,n, —1} is actually
intended to implement a numerical integration taken along the thin-walled
section contour (for example, when calculating geometrical properties of the
cross-section, values of shear forces flows, etc.), where x is the number of
segment, n_—1 is the number of sectional segments. It should be noted that the

angular positions are attributes of the ends of the sectional segments.
The initial data about the thin-walled section should be mapped onto the set of

the angular positions ¢, « =1,n. —1, by means of corresponding sets of sectional

{start end} start end

segments S° ={ Ge  »Cy Ge  5Cy }, set of sectorial coordinates

o° = {(T)ﬁ = {mi’”’t,u)i”d} o 0t u)} for the ends of sectional segments

as well as the set of thicknesses 8° = {8& c 6} for the segments, K =1,n_—1.

2. Construction of connected graph G associated with a section of a
thin-walled bar. An arbitrary cross-section of a thin-walled bar can be
associated with a planar connected non-oriented graph G determined on the sets

of G = {V,R} , where V is the finite set of the graph vertices, R is the set of
the graph edges or the set of unordered pairs on V (see Fig.3) [15, 16].
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" Herewith, for each

graph edge

@, % @ 5 @ v (i r={u,v}eR we

assume that u #v.

v, _ I i L, The vertices of the
T (T hG .

= . ) grap. are associated

L . ] with characteristic

v (ry) ) v, sectional points only,
I which can be either:

i) l) branch points are

Fig 3. Graph G associated with cross-section of thin-walled bar sectional ) points

(vy...v7 — branch points, vy, vs —end points) connected with more

than two  sectional
segments, vP = {fav |v= R}, here n, is the number of these points;
2) end points are sectional points connected with only one sectional segment
v = {fag lg= E}, here n, is the number of these points.

The edges of the graph G’ are associated with sectional parts located between
characteristic sectional points (with unbranched sectional parts). An edge of the
graph G, as a rule, may contain several sectional segments, so the full

information about edge RE- of the graph can be described by the set of sectional

segments 5, r=1,n,, , from the array S° = {315 = {gi’”“,gi”d} | =1,n —1},
§cess, belonging  to considered  graph edge, 5, €R;:

RS ={55 5 eS*ASF R, [r =1

- - ,ngrj}, here n_, is the number of segments

for /™ graph edge. The set of all the graph edges defined on the set of segments
S¢ can be expressed as R® = {R‘j | j= E} .

We also assume that the arbitrary section of the thin-walled bar may contain
some quantity of closed contours. Each closed contour is associated with a cycle

of the graph G or with a vertices sequence vé‘ , v,k , v§ , ..., V. such that

no
vE vk Vi e 3k, where n, is the number of closed contours in the section
(the number of the graph G’ cycles).

Some closed contour of a section I';* (a basic cycle of the graph G) can be

definitely determined by the set of the graph edges RE- € R® belonging to the

considered contour I'}° = {R? |j =L, }, where n. is the number of the

rely
graph edges belonging to k™ closed contour. Besides, it is convenient to have
the mapping of the closed contour I'}* onto the set of sectional segments s, ,

5> €S°, belonging to the considered closed contour, Vm=1,ngrk:
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r; :{En‘i :5n €S5,IR; c R :5; c R ARG F,rf}, here ng, ~is the
number of the sectional segments belonging to & ™ closed contour.
The closed contours (basic cycles of the graph G) defined on the set of
graph edges R® and on the set of section segments S° can be described as
= =1n, ! an = =1,n, } accor ingly. It should be note
@ =T |k=1n{ and ®° ={T} |k=1n, dingly. It should be noted
that the identification of closed contours in the section ®'¢ and ®¢ can be

easily implemented using depth-first search algorithms on the graph.
Let us compose an incidence matrix I for the graph G with dimensions

n,xn,, iz{ gy li :E, j :E} The components of the matrix take the
following values: g, =1, if i ™ graph vertex is a start vertex for ;" edge;

g;=-1,if i ™ graph vertex is an end vertex for j ™ edge; g; =0, otherwise.
Let us also introduce a matrix |I| ={| gl-j| |i :E, j =E} composed of the
modulus of elements g, of the matrix L

Next, we can compose a matrix of basic graph cycles F with dimensions
n, Xn,, F= {fkj},k = m,j = I,_n,. The components of the matrix take the
following values: fi =1, if j ™ graph edge belongs to k™ basic graph cycle

(RE- cTI'}) and the edge direction coincides with the positive direction of path

tracing; f,; =—1, if ;™ graph edge belongs to k" basic graph cycle

(RE- c I';) and the edge direction does not coincide with the positive direction

of path tracing; f; =0, if j ™ oraph edge does not belong to & ™ basic graph
cycle (RENI}; =)

3. Resolving equations relating to distribution of shear forces flows
taken along closed contours for an arbitrary section of a thin-walled bar.

Each j ™ edge RE-, j= H of the graph G’ corresponds to a constant — edge
weight, Yk :5¢ € RS AS5¢ € 8%

1 Gictl ng»y‘ lg

bi= j8(<;) - FEN 50 Id@zrﬂé' @D

r= ][ RG
Let us also compose the weighting matrix of unbranched sectional parts
(edges of graph G) — a square matrix W with dimensions n, Xn, and diagonal

elements p;, j=1Ln, :
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p 0 ... 0
0 .. 0

Ww=| . p:2 . o (2.2)
0 0 0 p,

-

Besides, each ;™ graph edge RE- corresponds to the increment of the

N
sectorial coordinate A®; ={Amf’j |j= l,nr} , VK5 € RS ASE €SS

AwS ;= J.pdg Idoo z j do = igT do = ZA(Dg (2.3)
r= ][ eRg r=l1 Gy

Each closed contour of the section F,: , k=1,nk, corresponds to the
following constant — contour weight, f;; € ¥, Vj:RS c T}
. dg dg
n=950" 1 39°
e S RS <)

Let us also introduce the weighting matrix of sectional contours — a square
matrix K with dimensions n, xn, :

n, g]‘k

A (24)

Pu “Po v TPy TPy
~Pa Pn 0 TPy TPy,
K= : : . N: : : , (25)
P TP v Pu 7 TP,
_pn,(l _pn,(Z _pr/,(k ]3)7,‘)7,‘

here the diagonal elements of the matrix are the weights of & ™ closed contour,
Pu = DPr» k=1ng; other elements of the matrix p,g take zero value

Pop = Ppo. =0, when corresponded closed contours have no common edges:
| ﬂFE =, and the sum of the weights for all common edges:
Pop = Ppo. :zpravr : R% QFEX/\R% gr[gi'

Let us consider the problem of torsion for an arbitrary thin-walled section
subjected to total torque A, only. When the cross-section consists of certain

number of closed (connected and/or disconnected) contours, as well as open
parts, the torsion problem for the cross-section of the thin-walled bar is statically
indeterminate. That is why not only static equations but also strain compatibility
conditions must be introduced to consideration.

Let us formulate the strain compatibility conditions considering
Castigliano’s functional. The latter can be identified with an expression for
strain energy formulated in terms of stresses for an isotropic material [3]:
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_ %] (le@)’
=50 ; ;2(1 )5(@)d€+f 1(9))" 8(0)dg | |- (2.6)

Besides, normal stresses 6(¢) can be omitted, as total torque acts only:

= Ly [ (x(©))* (c)dg |- @7

J=le;

Let us rewrite Castigliano’s functional C (2.7) substituting shear stresses

7(g) by their representation in terms of contour flows 7T = {ﬂ }T ,k=1n,

7, (c)
8,()

In this case we obtain the following expression for Castigliano’s functional:
- I . -
T.
Sﬁdc Ty 43(1@ "'+Tk¢dg_TlT2J' dg_Tl3J' g

L) = (2.8)

B(e) 26 3(¢) Gp Q) G 8Q G 80
_ﬂjﬂ_ﬂj&_ﬂjﬁ_m_ﬂ [
G080 G 80 G 80 G, 80
T T dg
- 55 (2.9)
G rkjlvké(q)

Tk lTk J‘
G | 8( )
work of the counter flows of shear stresses on the common parts of the thin-

walled bar cross-section.
It is evident that the resulting torsional moment in the section caused by all

Negative summands in (2.9) take into account the mutual

2 2T J—
contour flows of shear stresses 7' = {T k} , k=1,n, equals to the sum of the

torsional moments caused by each of these flows [3]:

ny "
M, =Y T,9, (2.10)
k=1
here Q, is the double area embraced by k " closed contour I' of the section.

Let us present the formulated problem in the form of a mathematical
programming task, namely as a problem for unknown contour shear forces flows

-

T ={fk }T, k=1,n, that ensure the least value of the optimum criterion, i.e.
Castigliano’s functional C (2.9) subject to equilibrium condition (2.10).
Let us present the solution of the formulated problem as follow:

M

T.=a o (2.11)
0
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where Q, is the double area for all closed contours of the section ®°,

Q= EQk ; a; is the factor for the distribution of shear forces flows along
k=1

k™ closed contour. Then Castigliano’s functional (2.9) can be rewritten as

presented below:

_ MP | g dg d
R e %() i e

I,

- dg - de .. ¢ dg .. ¢ dg
=2a1a; | —=—..—2a1q; | —=-2a,a; | —=—2a,a44 | —=—
rf 8() r{ 8() r{ 86 r{ 39

—24,3, j G | S 6() (2.12)

Iy ( |

and the equilibrium equation (2.10) can be presented by the following:

3 M M Tk
M, =Ya—=0,="2%Y340Q,,
g k QO k QO g k=%k
or
Ty
Q=Y a9, . (2.13)
k=1

So, the formulated problem can be presented as searching problem for
unknown distribution factors a ={a, }T, k=1,n, of shear forces flows taken

along closed contours of section that ensure the least value of Castigliano’s
functional C (2.12) subject to equilibrium condition (2.13).

The method of Lagrange multipliers can be used to reduce the problem
(2.12) — (2.13) to the searching for a stationary point of the following modified

functional A(?z,?»a), where A, is the Lagrange multiplier. Besides, the
stationary conditions for the modified functional A(?z,?»a) can be transformed

to a system of linear algebraic equations with an order of n, +1 presented

below in the vector-matrix form:
s SHEMK
@’ 0 A, 0

where Q= {Q, }T , k=1,n, is the column vector of double areas embraced by

, (2.14)

the closed contours of the thin-walled bar. The resolving system of equations
(2.14) to calculate distribution factors a, ={dk}r, k=1,n, of shear forces

flows along the closed contours of the section has been presented below:
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T T T P, [a, ] [0

: 0
“Pu Pn v TPu 7 TP gz a, 0
P TP v P TPey S |X| G |=| 0 [, (2.15)
Py TPn2 7 TPk ﬁnknk an Gy Q(Z)
1 Q, Q; an 0 -}”” 4 Lo

where the diagonal elements of the matrix are the weights of & closed contour,

P =DPi» k=Ln; Q, is double area embraced by k™ closed contour T,

3

Q= ZQk ; A, is the Lagrange multiplier. Other elements of the matrix p,,
k=1

take zero value pug = pg, =0 when corresponded closed contours have no

common edges: T'g, N F‘é =, and the sum of weights for all common edges [3]
i Pop = Ppa = D, P Vr : RECTG AR C T

The solution of the system of algebraic equations (2.15) returns the column
vector of factors 5,( ={dk |k=m} for the distribution of shear forces flows

along the closed contours of the section. Based on 3/(’ we can generate the
column vector of factors for the distribution of shear forces flows along the graph

G edges: A = {aj | j= E} , where each element should be determined as:

7y
a;=Y fydy. fyeF vi=ln, . (2.16)
k=1

Since every graph edge RS, j=1n., is described by the set of sectional

J roe

segments 5° €S% as: RS ={57:57 €S*AS? eR; [r=1n,,

}, then it is possible
to determine for each sectional segment si¢ € S¢ the value of piecewise constant
distribution function for shear flows taken along section a°(g) as the set of

agz{a]%h(:l,ng—l} as follows: ag=a;, Vk:5iN®°#J, and a; =0,

otherwise.

3. Resolving equations for an arbitrary cross-section of a thin-walled
bar. The search problem of shear forces flows for an arbitrary cross-section of a
thin-walled bar (including open-closed multi-contour cross-sections) can be
transformed into a minimization problem of Castigliano’s functional C subject
to constraints-equalities of shear forces flows equilibrium formulated for cross-
section branch points as well as subject to equilibrium equation for the whole
cross-section relating to longitudinal axes of the thin-walled bar [3].

Let us present the formulated problem as a mathematical programming task,
namely as searching for unknown values of shear forces flows at the start points
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of unbranched parts of a section:

Ty ={T . j=Ln,, (3.1)
which ensure the least value of the optimum criterion — Castigliano’s functional C :
C" =C(T5)= min C(Ty), (3.2)
T, €Sp

on a hyperplane of feasible decisions 3, described by the following system of
constraints-equalities:
{f(TS3={Jg(TS)=0|v=1,nv—1}; 53
J(T5)=0;
where T, s 1is the vector of design variables (searched shear flows); n, is the

number of unknown shear flows; 7. s is the optimum decision of the problem; C”

is the minimum value of Castigliano’s functional; f, is the function of the vector

argument T s n, is the general number of constraints-equalities fv(f ) and

fx(fs) which define the hyperplane of feasible decisions 3 in the sought space.

For Castigliano’s functional C we will consider Euler’s equations only which
define the strain compatibility conditions and are expressed depending on shear

forces flows T, 5 =1{T5, j}T, j=Ln, . Let us rewrite Castigliano’s functional C

Eq. (2.6) replacing normal stresses ¢(c) by Eq. (1.1), and shear stresses T(g) —
by the dependence on shear forces flows Eq. (1.2) as presented below:

1 0 Qy M
T.Q)=——|Ts . —=%S§ , ; —S —o59 . , (34
](Q) 8]- (Q)[ S.J [y oy, j (g) Z oz J(g) Im ow, j (g)j ( )
2
n, M
C= Lj—l [l+—zj+MZ jj 8 dg+
= 2G[I_2(1+v) 4 1, I
1 2 0. 9, Mg d@
+— TS’-—2TS’-—ZS0y,j—2TS,J-—SOZ,J- 2T, SJ S,6 ;
2G[I_[ S I Iy sj
e 0 M 4
2 (s 2 HMeg | 9 , 3.5
+2G£J./(Iy oy,j Iz 0z,j ]m otﬁ,_/] 6] ( )

here we omitted the functional dependence on the angular position ¢ (to

simplify presented formulas).
Let us leave in (3.5) those summands that depend on shear forces flows

values fsz{TS’j}T,jzm, and also denote by the symbol ... all other

summands that are do not depend on the vector 7, s . In this way we have obtain
the expression for Castigliano’s functional C in terms of shear forces flows

fs ={Ty 1" [3] as presented below:
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Qz Qy dg
_Z J-[_ S,Jj G[ Soy,j \¥i G[ Sa z,j SJ G]Gi S 6] s (36)

72
C= S.j J.dg_T ) Qz jS dC_', _T Qy S dg_
£ J

F oy,J S, 0z,j s
= B GI, ] "%, GI. ] "8,
M dg
Ty ;= [ S 2. (3.7)
Glg ] "8,

Where the integral J.E can be calculated according to (2.1), and the
¢ 5,

d . . .
integrals J. oy, 8 J. oz, 8 J.Som’ jS_g — using following equations

( ( j

(3.8), (3.9) and (3.10) accordmgly presented below, Vi :5¢ € RS Asg €S°:

(Qde  &( I
S, .= UZJ gstart+4S<; mzd+S<;end : 3.8
hz,j [J‘ 8(@) Z 68(; ( 0z, 0z, 0z,K ) ( )

Qdg & I
— Uy J G, start G, mid G.end
Sy = /j ol E (gt g asgnid s sged) o (3.9)

C1j

S50, @98 B[ (v, gcom
Sioy = | =% =Z (S a5 )| @310y
;O 655

Let us define the following column vectors consisting of 7, elements,

Vj= m (according to the number of edges of the graph G):

gth :SS:hyJ Sho),l

- =~ - S

T B ECE B R R (3.11)
Shz,n,. Shy,n,‘ Sh(l),n,.

Using the weighting matrix of unbranched sectional parts W (2.2)
introduced above as well as column vectors S’hz , §hy and S’hm presented above
(3.11), we can rewrite Castigliano’s functional (3.7) as the following vector-
matrix equation:

1 -
C=—T{WIy-T§ =28, -T] =
2G GI

z

T M
Gl, G

Next, for each section branch point we can develop an equation of shear
forces flows equilibrium in terms of projections on the longitudinal axis of the
thin-walled bar (Fig. 4). In order to obtain the general view for these equations
(the system of equations by the number of branch points in the section), we can

2=, ~Td — 08+ (3.12)
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Ve use the incidence
J matrices 1 and |I|

Ty Vo T Tps V5 T Tio v, T .

@ E1_'2 S,5 @ ES. S,9 E,9(7 S,10 lntroduced above,
I Tz Ts T’ which  reflect the
Vi ®) topological  structure
T, - of the considered
T, v, T3 T T, T, | cross-section of the
T ® % g N thin-walled bar. In this

5,6 E6| .
N y case we obtain the
following system of
Fig. 4. Relating to formulate equilibrium equations equations presented

for shear stresses flows in branch points of a thin-walled bar below in the matrix-

vector form:

(li]+1)75 —(ji|]-1) 7 =0, (3.13)
where T, = {Ts, j}T, j= E is the vector of shear forces flows at the start points
of unbranched sectional parts; T, = {T, j}T, j= m is the vector of shear forces
flows at the end points of unbranched sectional parts:

T, =T, —AT, (3.14)
where AT = {ATJ-}T, Jj =H is the vector of shear forces flows increments for

each unbranched sectional part:

2 0,2 0 2 Mg =
AT] :[_Sz’j+ I Sy,j +Xsm,]~, (315)
z y

where the vectors S, ;, S, ;, Sg ; are presented below:

SZ,] Sy’] SGS’]
§z = SZ:’2 ; §y =| " §os = SGZS’Z (3.16)
Sz,nr Sy,n,‘ SGS,n,

— -

and the components of vectors S, i Sy S"m’ ; can be calculated as follow,

Vi:5¢ € RS ASg €85

g
S.; = [ 7°(c)3(c)ds= Z(S&l&(y%“”” +%Ay§ D (3.17)
l,y- K=1
Mgy
S,y =] #(0)8(c)ds = Z(Silé (zg +%Az§)), (3.18)
0, K=1

7

Ny

So;= | 5°(c)3(c)ds = Z(Silfé (fﬁ%‘""" +%Amin. (3.19)

y x=I
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Let us rewrite the system of equations (3.13) substituting T w according to
(3.14). We obtain the following system of equations:

(1+1) 7 —(Ji|- 1) x(75 - A7) =0, (3.20)
(li|+ 1) 7 —(|i] - 1) 75 +(fi|]- 1) a7 =0 , (3.21)
207 +(|i| 1) AT =0 (3.22)

and taking into account (3.15):
oo oo (O 0. Mg -
2ITS+(|I|—I)><[[—SZ’].+[—Sy’j+[—Sm’j =0. (3.23)
z y [0}

The system of equations (3.23) presented above in the matrix-vector form
has n, equilibrium equations. The last equation is linear-dependent or a linear

combination from the previous n,—1 equations. Let us rewrite the system of
equations (3.23) excluding the last equilibrium equation:

i’ Q}/ < Qz < MGS <
—I)X[[—Sz’j+[—Sy’j+[—Sm’j =0, (3.24)
z y

@)

2i’fs+("

where 1’ is the incidence matrix of the graph G truncated by the last row with
dimensions (n, —1)xn,, 1 = {g;li=Ln,—1,j= H} ; |i’| is the matrix

composed using the modulus of elements g, of the truncated matrix I' as

[ =dlgy|1i=Tn, =1/ =L}

It is possible to derive the last equilibrium equation relating to the
longitudinal axis x—x of the thin-walled bar as a condition of the static
equivalence of the torsion moment caused by the shear forces flows to the total
torque M, acting in the cross-section of the thin-walled bar:

M, =Y [T;(c)dw=0, (3.25)
J=le;
where T,(6) is the shear forces flow at some point of the cross-section, which

can be expressed depending on shear forces flow 7 ;(¢) at the start point of the
corresponded unbranched part of the section as follow:

Qy Qz MGS
Ty =Ts ) =7 S0 = Sov.j ‘Xsow,j ,
z y

where we omitted the functional dependence from the angular position ¢ (to

(3.26)

simplify presented formulas).
Then:

< 0.
M, ZI[ ,j_[_Soy,j_[m OGSijdg 0;
l

Jj=1 ; z v [0}
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Jj=1

M Z S/deg _JSOZ ]pdg_Q JSO} ]pdg_ (D J.SO(D,jpdg =0.
/ / (D éj
Finally, we obtain [3]:
Q n,
ZTS]J‘pdg [_yz OZ]pdg_Q ZJ‘Soy]pdg
J=1 l;

z j=l, = e,

<

e Z Sy, pdg—M . =0, (3.27)

o j=ly.

N ‘

J

where integrals ZJ-SUZdeg, stuy’jpdg and ZJ-SUw,jpdg can be
=, =, =,

calculated using (3.28), (3.29) and (3.30) accordingly as presented below,

VKZEEER%Agfeng

& | & Ao d d
3 [ 55 (0hpds= 3| 3 A% (s vasg e sz) | G2s)

7=y, J=1\ x=1
& & A0S
r ld
2 =3 ] 55, (0pds= 3| 3 A% CSsr vasgnl v sgat) |, (3.29)
7=y, J=1\ x=1

n,

3. | Ska (0)pdc= 2[2 A‘g (SS&‘Z”+4S§mmzd+ssg':<d)]. (330)

]][ J=1\ k=1

Let us rewrite the constraints-equality (3.27) using vector representation
taking into account equations (3.28), (3.29) and (3.30) as presented below:
- 0
T§o_Zy

) 0. M
B Ty =8, =5, =~ 85,0~ M =0, (3.31)

1% I, o
Thus, the formulated problem is presented as a mathematical programming
task of searching for the unknown values of shear forces flows at the start points

of the unbranched parts of the section:

Ty=1Ty ;" j=Ln,, (3.32)

which ensure the least value of the following Castigliano’s functional C (3.12):
1 T = T M

C=—GTs WIs—T§ Gly S, —T ol =5, T, G“’SW .—min, (3.33)

subject to the following equilibrium conditions (3.24) and (3.31):
. - L M -
— I') &Sz,j + Qz Sy,j +_63S63,j = 0’
I I, Iy

g M
mTTS—&SpZ—%S -—C85—M, =0.
I 1, I

20T, +(i’

(3.34)
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The method of Lagrange multipliers can be used to reduce the mathematical
programming task (3.32) — (3.34) to the searching for the stationary point of the

following modified functional A(T5,A",1, ):

N 1 =i = = . o o Mg -
AT AT, )= T WTG T =28, T 225, ~T] 05,0+
w26 GI, GI, ™ Gl
il e il N[Oz 0.2 Mga
+A7 |21 TS+(I —I) —S,;+=58, +—Sg, ||+
I I s
z y [0}
i M .
+h,, {mTTS —%SPZ —%Spy - S —Mx:l —min,  (3.35)
z y @)

where A = A r4s f=Ln,—1 is the vector of Lagrange multipliers consisting of
n,—1 elements; 7»,," is an additional Lagrange multiplier.

The stationary conditions of the modified functional A(f S,XT,X,,\’) (3.35)

can be transformed into a system of #n.+n, linear algebraic equations and
presented in vector-matrix form as follow [3]:

1 T S N

E.W 2i AoS 7, 0,

21 O, 1n-1 0,4 |X% All=M, % 0, 1|+

Aod) 0l 0 Ay, i
G G G
. . M LN =

+=2 x| (i - [i7])S. +%>< (=[S, |+« == x| (I -[i])Ss |, (336
z [0]
Spz g Soy Sow
where

JZ5 )
M=| 21 ©,,,, 0
A5 0

n,—1

n,—1 |»

0

M is a square matrix with dimensions (n, +n,) X (n, +n,), here n. and n, are
the numbers of edges and vertices of the graph G, accordingly; Ao is the
column vector of sectorial coordinates increments A®S ={Am§, il j:E}T
consisting of n, components calculated according to (2.3); §y, S’Z, S’m are the
column vectors (3.16) with n, components calculated according to (3.17),

(3.18) and (3.19) respectively; §hy, S’hz, S’hm are the column vectors (3.11)
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with n, components calculated according to (3.8), (3.9) and (3.10) respectively;

Soy» Spz» Spp are the integral section properties calculated according to (3.28),

(3.29) and (3.30) respectively.
The solution of the system of equations (3.36) determines the column vector

of shear forces flows T, 5 =1{T5, j}T, j=Ln,, at the start points of unbranched

cross-section parts. The vector 7_”; can be also presented as follow:

- - 0, - - M -
Tg=Mb +—b_+ O b, +—2b . (3.37)
L7 I
In this case, the system of algebraic equations (3.36) disintegrates and transforms
into four systems of n,+n, algebraic equations relating to the column vectors

I;x, I;y, I;Z and I;m consisting of n, elements [3] as presented below:

q . Sy
éx 0, éy

Mx|| A, =0, [; Mx|| A, |= (I I’)xSy ;
A x 1 A Soy

- §hz oA

b, G bg

Mx| X, |=[ (I'=[i)xS. [ Mx| Zq |=|(I"=[i")x55 |, (3:38)
A’n‘,z pz A’n\,(D Sp(D

where A, =, )7, X, =, ' Ao=037) Rg=g ), f=Ln,—1
are the unknown column vectors of Lagrange multipliers consisting of 7, —1

elements; &, ., A, ,, A

nys Mnzs My g are the additional Lagrange multipliers.
The projection of the vector I;x =1, ;1J =H} defined of the set of n,
unbranched sectional parts into the set of sectional segments

bg—{ ok |K=Ln 1} can be written as: b, =b,; Vk:5¢cRS5; and
by =0 Vk:5¢RS=C. Similarly, the column vectors b, ={b, ;| j=1n,},

I;Z =1, ; |j=E} and I;m ={bg;|J =E} can be also projected into the set

of sectional segments obtaining corresponded column  vectors

b = {5, [x=Ln 1}, bS ={b%, |x=Ln 1} and b = (b5 [k =Ln_~1}.
The following transformations for the first moments of inertia and for the

sectorial moment of inertia should be performed, Vk =1, n.—1:

Sogzlc {OZK bzg,K}; So%zlc {OyK b,K}; (339)
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_ ~ — 1
Siow St s S [Sinamai 21 G0
0

Let us define the sets of shear forces flows values for the start, middle and

end points at the middle line of the sectional segments T‘;’S’z{TK‘;’”},

Tomid :{7;‘5””""}, TS :{Tlf’e”d}, k=1,n.—1, consisting of n.—1 elements

(by the number of sectional segments) as presented below [16]:

H _ _ M -
remw <9 go O genor Ccgon Mo g (3.1
0 z ¥y (0]
. H o, . o Mo
R % Son! == Sawx (342)
0 z ¥y (0]
end _ OH Oy ceend_ O: ceend Mo Geend
7o =Q—Oa§—l—zsjzif —Iy S(fye]'c’ _I_;S%j" (3.43)

where the first moments of inertia §§Z’K, §§y’K and the sectorial moment of inertia

ng,x are calculated using transformations (3.39) and (3.40), accordingly.

The shear stresses for each k™ sectional segment

¢ :{Tﬁi :{1:%“"" smid gsend }} , k=1,n_—1, can be calculated as presented below:

TSstart — 7;?’””” + (1_ 50) Hsi
> *
& 17 4
o TS (1- ) H8S
5 =4 1" =|x =) : (3.44)
8% Iy
Tg,end — Yzcg,end + (1_50) Hsi
* & | L
where the torsion moment of inertia /. and the parameter g are calculated as:
1ng—l <l 3
I.=1, +1r=§21K (88) +1r (3.45)
K=l
p=1-1./1.. (3.46)
The components |75 /85|, |15 /85| and ‘Tlf’e”d/Si in (3.44) define

shear stresses values for the start, middle and end points at the middle line of
k™ sectional segment, accordingly. Besides, transition from the shear stresses
related to the middle line of k™ segment to the shear stresses at the outside
longitudinal edges of this segment can be performed by addition or subtraction

of the member (1- ) H3SI; " .
5. Software implementation and numerical examples. The numerical

algorithm developed and presented above has been implemented in SCAD Office
environment by the program TONUS (www.scadsoft.com) (see Fig. 5) [19]. The
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computer program TONUS presented below is intended to create cross-sections of
the thin-walled bars, to calculate geometrical properties as well as to calculate
normal, shear and equivalent stresses in these cross-sections [5]. Software
TONUS allows to consider arbitrary (including open-closed) cross-sections of the
thin-walled bars. A cross-section of the thin-walled bar is constructed from the set
of segments (stripes) by specifying node coordinates which define the position of
segment ends as well as by specifying thicknesses for all segments.

8
2w

RN

o | T
- ]

"8 okic_open

585778150

Fig. 5. TONUS main window

Besides calculation of geometrical properties for the cross-sections of the thin-
walled bars software TONUS also represents sectorial coordinates diagram as well
as static moment diagrams S, , S, and first sectorial moment S diagram.

In order to represent normal, shear and equivalent stresses diagram in the
section of the thin-walled bar user should specify internal forces acting in the
section. Initial data to construct normal stresses diagram are bending moments
M, and M, relating to the main axis of inertia of the thin-walled bar cross-

section, axial force N applied at the center of mass of the section as well as

warping bimoment B . Initial data to construct shear stresses diagram are shear

forces O, and O, applied at the center of mass of the cross-section as well as

total torque M, and warping torque M . In order to represent equivalent

stresses diagram user should also specify a strength theory.

60 10, 5.1. Example 1: thin-walled bar

] | with open profile. Let us to consider an

m‘ example of calculation of a thin-walled

= bar with open profile in order to validate

~ developed  algorithm and  verify

. 3 calculation accuracy for sectorial cross-

~15 section properties and shear stresses
caused by warping torsion.

~ Initial data for calculation are

| presented by Fig. 6. Results of calculation,

S namely sectorial coordinates diagram o ,

Fig. 6. Open section of thin-walled bar with ¢, and shear stresses diagram related to

cross-sectional sizes, cm the value of warping torque

30
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T oM 0_)] %107 (cm™) have been obtained in paper [12] and presented by Fig. 7.

Results of calculation, namely sectorial coordinates o , sectorial moment of

inertia S, and shear stresses

T

(O]

caused by the warping torque

M, =10"kN cm, have been also obtained using TONUS software and

presented by Figs. 8 — 10.

-810

3303

2202

+1436

+707

-258

-1438

(2)

(b)

Fig. 7. Results of calculation according to [12]: (a) — sectorial coordinate diagram @ , cm’;

(b) — shear stresses diagram related to the warping torque rmM;' x107 , cm’

e

Fig. 8. Results of calculation obtained using
TONUS software — sectorial coordinated
diagram @ , cm’

[ "~

z J

—— TE—
e

Fig. 10. Results of calculation obtained using
TONUS software — modulus of shear stresses

diagram 1, caused by warping torsion for the value

of warping torque M = 10’ kNem, kN/em®

3

Fig. 9. Results of calculation obtained using
TONUS software — sectorial moment of

. . 4
inertia S, cm

Comparison  for  calculation
results of sectorial first moment of
inertia and shear stresses caused by
warping torsion as well as
comparison for calculation results of
sectorial coordinates for considered
cross-section of the thin-walled bar
are presented by Tab. 1 and Tab. 2.
As you can see deviations do not
exceed 0,25% in all cases. It proves
the validity of the results obtained
using developed software.
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Table 1

Comparison for calculation results of the first sectorial moment and shear
stresses caused by the warping torque for considered open cross-section of the
thin-walled bar

= ) ) 4 Shear stresses T, , kN/cm®
ce |8 w First sectorial moment S, , cm 7
85|28 (when M, =10", kNcm)
FAEE »
A28 E| 121 | TONUS DeVLZ“"“’ [12] | TONUS |Deviation,%
%)

1 1 32126 | 32140 0,04 1735 1736 0,06

1 2 0 0 0 0 0 0

2 1 32126 | 32140 0,04 3470 3472 0,06
2 8 30580 | 30585 0,02 3303 3304 0,06
3 8 30580 | 30585 0,02 2202 2202 0

3 4 7999 7985 0,18 576 575 0,17
4 4 6013 6019 0,1 433 432 0,23
4 5 0 0 0 0 0 0

5 4 14008 | 14004 0,03 1513 1513 0

5 3 15498 | 15498 0 1674 1674 0

6 6 0 0 0 0 0 0

6 3 25423 | 25443 0,08 1373 1374 0,07
7 3 9943 9945 0,02 537 537 0

7 7 0 0 0 0 0 0

Table 2

Comparison for calculation results of sectorial coordinates for considered open
cross-section of the thin-walled bar

Section point Sectorial coordinate ® , cm’
number [12] TONUS Deviation, %
1 707 707 0
2 1436 1436 0
3 -258 -258 0
4 308 308 0
5 494 494 0
6 -1438 -1438 0
7 921 921 0
8 -810 -810 0

5.2. Example 2: thin-walled bar with open-closed multi-contour profile.
Let us to consider an example of calculation of a thin-walled bar with open-
closed multi-contour profile in order to validate developed algorithm and verify
calculation accuracy for geometrical cross-section properties and shear stresses
caused by warping torsion as well as shear force. Initial data for calculation are

presented by Fig. 11.
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0.5 0.5 ~
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~ e — - -
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Fig. 11. Open-closed multi-contour section

of the thin-walled bar with cross-sectional dimensions, cm

Calculation results, namely sectorial coordinates diagram @, diagram of
shear stresses caused by warping torsion related to the value of warping torque

oM gj' %107, as well as diagram of shear stresses caused by acting of shear

force related to the value of shear force t,0;'x10° have been obtained by
Proki¢ [12] and presented by Fig. 12.

+3241

?—1102
+1102

A

+249
249

-3241

Fig. 12. Results of calculations according to [12]: (a) — sectorial coordinates diagram @ , cm’;
(b) — shear stresses diagram caused by warping torsion related to the value of the warping torque

rmMr;' x10, cm?; (c) — shear stresses diagram caused by shear force related to the value of shear

-1 S -2
force 1,0, x10°,cm
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o2 1102 1483
324

9 j o3 \
(b)
|
feota 61 g 4o
(©
ﬁ 0% % Fﬁs
Sl -ABE3 2 33686 3
73

10
0436

(@
Fig. 13. Distribution diagrams obtained using TONUS software:
(a) — normalized sectorial coordinates @ , cm’;

(b) — first sectorial moment S, cm®;
(c) — modulus of shear stresses T, , constructed depending on the value of the warping torque
M= 10" kN cm, kN/em?;
(d) — the first moment S relating to the principle axis v—v, cm’;
(e) — modulus of shear stresses T, , constructed depending on the value of shear

force Q, = 10° kN, kN/cm?
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Table 3

Comparison for calculation results of first moments for considered open-closed
multi-contour cross-section of the thin-walled bar

. . First sectorial moment S, First moment S, , cm’
Section |Section 4
segment| point ‘m _ _
number jnumber| [12] | TONUS |PV28% | [12] | ToNus | Pevation
o0 o0
1 1 0 0 0 0 0 0
1 2 |87776| 87892 0,13 3643 3634 0,25
2 2 |65181| 65296 0,18 740 741 0,14
2 3 |63932| 64036 0,16 2903 2899 0,14
3 3 |67055| 67159 0,16 1812 1817 0,28
6 7 |26114| 26164 0,19 3595 3606 0,3
6 8 126489 | 26517 0,11 - 10 -
7 8 144606 | 44666 0,13 3816 3819 0,08
9 2 [22595| 22595 0 4373 4369 0,09
9 7 |26135| 26164 0,11 3606 3606 0
10 3 3176 3177 0,03 4715 4716 0,02
10 8 18117 | 18149 0,15 4031 4033 0,05
Table 4

Comparison for calculation results of shear stresses caused by the warping
torque as well as by the shear force for considered open-closed multi-contour
cross-section of the thin-walled bar

) | Shear stresses Ty, kN/cm® | Shear stresses T, , kN/cm®
Section |Section 7 5
segment | point (when M5 =10", kNcm) (when O, =10, kN)
number |number [12]| TONUS Devi'ztion, [12] | TONUS Devi'ztion,

1 1 0 0 0 0 0 0
1 2 843 844 0,12 197 197 0
2 2 626 627 0,16 40 40 0
2 3 614 | 615 0,16 157 157 0
3 3 644 | 645 0,16 98 98 0
6 7 209 | 209 0 162 163 0,6
6 8 212 | 212 0 — 10 0
7 8 357 357 0 172 172 0
9 2 434 | 434 0 473 473 0
9 7 502 503 0,20 390 390 0
10 3 61 61 0 510 510 0
10 8 348 349 0,29 436 436 0
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Table 5
Comparison for calculation results of normalized sectorial coordinate for
considered open-closed multi-contour cross-section of the thin-walled bar

Section point Sectorial coordinate @, cm’
number [12] TONUS Deviation, %

1 +3241 +3241 0

2 —1483 —1483 0

3 -1102 -1102 0

7 -261 -261 0

8 +249 +249 0

Calculation results, namely sectorial coordinates @, static moment S,

relating to the main axes of inertia v—v, first sectorial moment Sg, shear

[0

stresses T, caused by shear force O, =10° kN as well as shear stresses T

caused by warping torque Mg = 10" kNem for considered open-closed multi-
contour section of the thin-walled bar have been obtained using TONUS
software and presented by Fig. 13.

Comparison for calculation results of first moment S, and first sectorial

moment Sy, comparison for calculation results of shear stresses 1, and T
caused by shear force O, and warping torque Mg respectively as well as

comparison for calculation results of sectorial coordinates @ for considered
open-closed multi-contour cross-section of the thin-walled bar are presented by
Tabs. 3 — 5. Deviations are no more than 0,3% in all design cases. It proves the
validity of the results obtained using developed software.

Conclusions. The searching problem of shear stresses outside longitudinal
edges of an arbitrary cross-section (including open-closed multi-contour cross-
sections) of a thin-walled bar subjected to the general load case has been
considered in the paper. The formulated problem has been transformed into a
minimization problem of Castigliano’s functional subject to constraints-
equalities of shear forces flows equilibrium formulated for cross-section branch
points as well as subject to an equilibrium equation for the whole cross-section
relating to longitudinal axes of the thin-walled bar.

A detailed numerical algorithm intended to solve searching problem of shear
forces flows for an arbitrary cross-section of a thin-walled bar subjected to the
general loading case using the mathematical apparatus of the graph theory has
been developed. The algorithm is oriented on software implementation in systems
of computer-aided design of thin-walled bar structures. Developed algorithm has
been implemented in SCAD Ofice environment by the program TONUS.

Numerical examples for calculation of the thin-walled bars with open and
open-closed multi-contour cross-sections have been considered in order to
validate developed algorithm and verify calculation accuracy for sectorial cross-
section geometrical properties and shear stresses caused by warping torque and
shear forces. Validity of the calculation results obtained using developed
software has been proven by considered examples.
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Yurchenko V. V.
SEARCHING FOR SHEAR FORCES FLOWS IN ARBITRARY CROSS-SECTIONS OF
THIN-WALLED BARS: DEVELOPMENT OF NUMERICAL ALGORITHM

Development of a general computer program for the design and verification of thin-walled bar
structural members remains an actual task. Despite the prevailing influence of normal stresses on the
stress-strain state of thin-walled bars design and verification of thin-walled structural members
should be performed taking into account not only normal stresses, but also shear stresses.

Therefore, in the paper a thin-walled bar of an arbitrary cross-section which is undergone to the
general load case is considered as investigated object. The main research question is development of
mathematical support and knoware for numerical solution for the shear stresses problem with
orientation on software implementation in a computer-aided design system for thin-walled bar
structures.

The problem of shear stresses outside longitudinal edges of an arbitrary cross-section (including
open-closed multi-contour cross-sections) of a thin-walled bar subjected to the general load case has
been considered in the paper. The formulated problem has been reduced to the searching problem
for unknown shear forces flows that have the least value of the Castigliano’s functional. Besides,
constraints-equalities of shear forces flows equilibrium formulated for cross-section branch points,
as well as equilibrium equation formulated for the whole cross-section relating to longitudinal axes
of the thin-walled bar have been taken into account.

A detailed numerical algorithm intended to solve the formulated problem has been proposed by
the paper. The algorithm is oriented on software implementation in systems of computer-aided
design of thin-walled bar structures. Developed algorithm has been implemented in SCAD Office
environment by the program TONUS. Numerical examples for calculation of thin-walled bars with
open and open-closed multi-contour cross-sections have been considered in order to validate
developed algorithm and verify calculation accuracy for sectorial cross-section geometrical
properties and shear stresses caused by warping torque and shear forces. Validity of the calculation
results obtained using developed software has been proven by considered examples.

Keywords: thin-walled bar, arbitrary cross-section, shear forces flow, closed contour, graph
theory, Castigliano’s functional, mathematical programming task, method of Lagrange multipliers,
algorithm, software implementation.

FOpuenko B. B.
MOIIYKOBUM ATTOPUTM BU3SHAYEHHSA MMOTOKIB JOTUYHUX 3YCUJIb I
JOBLJIBHOI'O IEPEPI3Y TOHKOCTIHHOTI'O CTEPXXHSI

Po3pobka yHiBepCalIbHOrO NPOrPAMHOr0 KOMIUICKCY IS PO3PAaXyHKY Ta IPOEKTYBAaHHS
TOHKOCTIHHHMX CTEP)KHEBHX €JIEMCHTIB KOHCTPYKLiH HAaChOTOAHI 3ajIMINAETBCS aKTYaJIbHOIO
3ajadero. He nuBisuMch Ha BU3HAYalIbHUM BIUIMB HOPMAaJbHUX HANpPY)XEHb HAa HaNpPYXEHO-
nehOpMOBaHHI CTaH TOHKOCTIHHHMX CTEp)KHIB, IEpeBipka HECydoi 34aTHOCTI TAKUX EJIEMEHTIB
HOBHHHA BUKOHYBATHCh, OEpyUH 10 YBAarM TAKOXK 1 3HAYCHHSI JOTHYHHX HAIPYIKECHb.

VY 3B’13Ky 3 UM pO3MISIHYTAa 3ajada [IOLIYKYy 3HAYCHb IIOTOKIB MOTHYHHUX 3YCHJb IS
JOBIIBHOTO Tepepidy (BiIKpHTO-3aMKHYTOr0 0araTOKOHTYPHOIO) TOHKOCTIHHOTO CTEpXKHS UL
3araJlbHOr0 BUMaAKy HaBaHTaxkeHHs. CopMynboBaHa 3amada 3Be[eHA 0 3a4adi MAaTeMaTHIHOTO
IpOrpaMyBaHHs, a caMe [0 3aJadi IOLIYKY HEBIAOMHX IIOTOKIB JOTHYHUX HANpPYyXeHb, IO
3a0e3neuyoTh HaliMeHle 3HadeHHs (QyHKuioHany KacrinesHO mpH 3aJ0BOJICHHI OOMEXEHb
pIBHOBaru MOTOKIB Yy TOYKAX PO3TalyXCHHs Iepepidy, a TAaKOoX MPH 3aJOBOJICHHI PIBHSIHHS
PIBHOBAaru ychoro rnepepizy TOHKOCTIHHOIO CTEPIKHS BiJHOCHO IT03[I0BXKHBOI OCi.

Po3pobneHuil [eTanbHHI aNrOPUTM YHCIOBOrO po3B’si3Ky chopMmysboBaHOI 3amadi 3
BHKOPUCTaHHSAM MAaTEeMaTHYHOIO amnaparty Teopil rpadis, opieHTOBaHHI Ha MPOrpaMHy peai3awiio B
CUCTEMAX aBTOMATHU30BAHOI'O IIPOCKTYBAHHS TOHKOCTiHHl/lX CTCPKHEBUX CUCTEM. Bl/lKOHaHa
[porpaMHa peaiisailis po3poOJICHOr0 aIrOPUTMY Y CEPEHOBHIN OOYHCIIOBAILHOTO KOMIUICKCY
SCAD Office y nporpami TOHYC.

3 wmerorw Bepudikalii po3poOIICHOr0 ajlropuTMy Ta TMEPEeBIipKH TOYHOCTI OOYHCICHB
reOMETPUYHHX XapaKTEPUCTHK Iepepidy Ta DOTHMYHHX HANPYXEHb Y HbOMY PO3IJIIHYTI NPUKIAIH
PO3paxyHKY TOHKOCTIHHMX CTCP)KHEBHX €IEMEHTIB BIIKPUTOIO Ta  BiJKPUTO-3aMKHYTOI'O
6araToKOHTYpHOro mepepiziB. Ha po3risiHyTHX NMpHKIagax JOBeACHA JAOCTOBIPHICTh Pe3yJIbTATIB,
OTPHMYBAHHX 32 JOIIOMOI'OK PO3POOIEHOr0 IPOrPaMHOro 3a0e3neyeHHs.

Kurio4oBi c10Ba: TOHKOCTIHHMII CTep)KeHb, JOBUIBHUH Iepepi3, MOTOKH IOTHYHUX 3yCHIb,
3aMKHYTHH  KOHTyp, Teopis rpadiB, ¢yHkiionan KacrinesHo, 3amgaya MaTeMaTH4HOrO
IpOrpaMyBaHHs, METOJl MHOXKHUKIB Jlarpanxa, aroput™, porpamMHa peasi3aris.
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FOpuenko B. B.
MOUCKOBBII ANTOPATM OIMPEJIEJEHUS IOTOKOB KACATEJBHBIX YCUJIUM
JJISI TPOU3BOJIBHBIX CEYHEHU TOHKOCTEHHBIX CTEPKHEM

Pa3paboTka yHHBEPCAJIBHOTO MPOrPAMMHOIO KOMILJIEKCA Ul pacdyeTa M HPOSKTHPOBAHMS
TOHKOCTEHHBIX CTCP)KHEBBIX 2JIEMEHTOB KOHCTPYKLMH OCTaeTcs akTyalbHOIl 3amaueil. Hecmorps Ha
IpEBATUPYIOIEE BIMSHHE HOPMAJIbHBIX HANPDHKCHHH Ha HANPSHKEHHO-Ie(hOPMUPOBAHHOE
COCTOSIHUE TOHKOCTCHHBIX CTEp)KHEH, IPOBEpKa HECYIeH COCOOHOCTH TAKMX JJIEMEHTOB JODKHA
BBIINNOJIHATHCA, IPUHHUMAs BO BHUMAaHUE TaAKXXE U 3HAYCHUSA KaCaTCIIbHbBIX Hanpsm(el-mﬁ.

B cBsi3u ¢ 3THM paccMOTpeHa 3a[ava MOMCKAa 3HAYCHHH MOTOKOB KacaTENIbHBIX YCHIMH st
IPOU3BOJIBHOI'O CCYCHUA (0TKpblT0—3aMKHyTOFO MHOT'OKOHTYPHOI'O cequm{) TOHKOCTEHHOI'O
CTepXXHA aysl obuiero ciydas Harpyxkenus. CdopmynupoBaHHas 3agada IpUBEACHA K 3amadye
MaTréMaTU4Y€CKOro IMnporpaMMHpOBaHHs, a HMMEHHO K 3aJa4e IIOHMCKa 3Ha'—leHMﬁ HCHU3BCCTHBIX
IIOTOKOB KacaTCJIbHbIX HaﬂpﬂmeHMﬁ, OGCCHC‘H/IBalOLUJ/lX HAaMMCHBIIICC 3HAYCHHUC q)yHKLU/IOHaJ'la
KaCTl/lJ'll)ﬂHO npu  yYIOOBJIETBOPECHUH orpaaneHMﬁ PaBHOBECHA IIOTOKOB B TOYKaX BETBJICHUA
CCUYCHHs, a TAKXKC IIPHU YIOOBJIECTBOPCHUH YPAaBHCHHSA PAaBHOBECHUS BCEro CCUYCHHUSA TOHKOCTCHHOI'O
CTEP)KHSI OTHOCUTENIBHO POJOIBHON OCH.

Pa3pabotaH AETAIbHBI AITOPUTM YHCICHHOTO peIIeHHs CcHOPMYIMPOBAHHOH 3amadd ¢
HCIIONb30BaHHEM  MAaTEMaTHYECKOro  ammapata Teopud rpad)oB, OpPHCHTHPOBAHHBIA  Ha
HPOrPaMMHYIO PEaH3alHMI0 B CHCTEMax aBTOMATH3UPOBAHHOIO MPOCKTHPOBAHUS TOHKOCTCHHBIX
CTEP)KHEBBIX CHUCTeM. BhIMOnHeHa mporpaMMHas peanu3alus pa3paboTaHHOro aaropuTMa B cpene
BerurcnuTensHoro komiutekca SCAD Office B mporpamme TOHVYC.

C nenpio BepupHKaUUH Pa3pabOTAaHHOrO AIrOpUTMa M IMPOBEPKH TOYHOCTH BBIYHCICHHI
TEOMETPUYCCKUX XapaKTEePHCTHUK M KacaTeNIbHBIX HANpsDKEHHH PacCMOTPEHBI NMPUMEpBI pacdera
TOHKOCTECHHBIX CTCPXHEBBIX J3JEMEHTOB OTKPBITOIO MW OTKPBITO-3aMKHYTOI'O MHOI'OKOHTYPHOI'O
cedyeHnii. Ha paccMOTpeHHBIX IpHMepax J0Ka3aHa AOCTOBEPHOCTh Pe3yJIbTATOB, HOIYYaeMbIX MPH
UCI0JIb30BaHUH pa3paboOTaHHOIrO POrPAMMHOr0 00eCIICYCHH S,

KiroueBble €J10Ba: TOHKOCTCHHBIH CTEPIKEHb, IIPOU3BOJIBHOE CEUCHHE, TIOTOKH KacaTelIbHbIX
YCHIINii, 3aMKHYTBIH KOHTYp, Teopus rpados, ¢yukiponan KacruibsHo, 3a1aya MaTeMaTHIECKOTO
IPOrpaMMHUPOBAHUs, METOA MHOXKHTeNeit Jlarparka, anropiuT™, MporpaMMHasi peau3aiust

VK 624.014
FOpuenxo B. B. ITlomykoBuii aJropurM BH3HAYeHHs MNOTOKIB [JOTHYHUX 3YCHIb s
JIOBLILHOTO Iepepily TOHKOCTIHHOIO CTEp:KHSI Ta iioro mporpamMHa peanizanis // Omip
marepialiB i Teopis ciopya: Hayk.-tex. 30ipH. — K.: KHYBA, 2019. — Bun. 103.—C. 82—-111.
Posznsanyma 3adaua nouwtyky nomoxie 00mu4HUX 3yCuib y 006iIbHOMY nepepizi moHKOCMIHHO20
CcmepoHCHsL 015 3A2AIbHO20 8UNAOKY HABAHMAdCeHHs. Po3pobaenuii Oemanvruil aneopumm yucio6020
PO36’A3KY CPOpMYIbOBanOi 3a0ayi ma SUKOHAHA 1020 npoepamua peanizayis. Ha poszensmymux
NPUKIAOAx PO3PAXYHKY MOHKOCMIHHUX CIMEPHCHEeBUX eleMeHmie BiOKpumoz2o ma GiOKpumo-
3aMKHYMO20 06a2amoKoHmypHO20 nepepizie 006edena 00CMOGIPHICMYb Pe3VIbMAmie, OMmpUMyaHUX
3a 00NOMO2010 PO3POOIEHO20 NPOSPAMHO20 3a6e3neUeHHsl.
In. 13. Ta6x. 5. Bi6uior. 19 Ha3s.

UDC 624.014

Yurchenko V. V. Searching for shear forces flows in arbitrary cross-sections of thin-walled
bars: numerical algorithm and software implementation // Strength of Materials and Theory of
Structures: Scientific-and-technical collected articles — Kyiv: KNUBA, 2019. — Issue 103. — P. 82—
111.

The problem of shear stresses outside longitudinal edges of an arbitrary cross-section of a thin-
walled bar subjected to the general load case has been considered. A detailed numerical algorithm
intended to solve the formulated problem has been proposed and has been implemented by the
software. Validity of the calculation results obtained using developed software has been proven by
considered numerical examples for calculation of thin-walled bars with open and open-closed multi-
contour cross-sections.

Fig. 13. Tab. 5. Ref. 19.
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Paccmompena 3a0aua noucka NHOMOKO8 KACAMENbHBIX YCUMULL 6 NPOU3BOILHOM CedeHUlU
MOHKOCMEHHO20 cmepichs 05l 06we2o cayuas saspyxcenus. Paspaboman demanvhviil aneopumm
YUCTEHHO20 peuleHUsl CHOPMYTUPOBAHHOU 3a0a4 U bINOIHEHA €20 NPOSPAMMHAs pearusayus. Ha
DPACCMOMPEHHBIX NPUMEPAX PAciema MOHKOCMEHHbIX CMEPICHEeBbIX DIEMEHM08 OMKPbIMo20 U
OMKPBIMO-3AMKHYMO20 MHO20KOHIMYPHO20 Cedenull OOKA3aHa O0CMOBEPHOCMY  Pe3YIbMamos,
NOIYHAeMbIX € UCHOTb308AHUEM PA3PAOOMAHHO20 NPOSPAMHO20 0becneyeHsl.
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